K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2020

tham khảo câu hỏi của đắng sôcôla trên hoc24.vn nha

5 tháng 2 2021

a) 2(x+1)=2x-1

<=> 2x+2=2x-1

<=> 2x+2-2x+1=0

<=>1=0

=>Pt vô nghiệm

9 tháng 8 2019

27 tháng 4 2020

Vì x^2-2x+17<3-4x←→x^2+2x+14<0←→(x+1)^2+13<0←→Vô nghiệm

Ta có: \(x^2-2x+17< 3-4x\)

\(\Leftrightarrow x^2-2x+17-3+4x< 0\)

\(\Leftrightarrow x^2+2x+14< 0\)(1)

Ta có: \(x^2+2x+14\)

\(=x^2+2x+1+13\)

\(=\left(x+1\right)^2+13\)

Ta có: \(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+1\right)^2+13\ge13>0\forall x\)

hay \(x^2+2x+14>0\forall x\)(2)

Từ (1) và (2) suy ra \(x\in\varnothing\)

hay bất phương trình \(x^2-2x+17< 3-4x\) vô nghiệm(đpcm)

19 tháng 2 2018

Ta có: |2x + 3| = 2x + 3 khi 2x + 3 ≥ 0 ⇔ x ≥  -1,5

       |2x + 3| = -2x – 3 khi 2x + 3 < 0 ⇔ x < -1,5

Ta có: 2x + 3 = 2x + 2 ⇔ 0x = -1

Phương trình vô nghiệm.

       -2x – 3 = 2x + 2

       ⇔ -2x - 2x = 2 + 3

       ⇔ -4x = 5

       ⇔ x = -1,25

Giá trị x = -1,25 không thỏa mãn điều kiện x < -1,5 nên loại.

Vậy phương trình đã cho vô nghiệm.

16 tháng 4 2019

Ta có:

2x – 3 = 2(x – 3)

⇔ 2x – 3 = 2x – 6

⇔ 2x - 2x = 3 – 6

⇔ 0x = -3 (vô lí)

Vậy phương trình đã cho vô nghiệm

11 tháng 3 2022

ơ kìa giúp vs

11 tháng 3 2022

+) 2x – 1 = 0 ⇔ x = Trắc nghiệm Diện tích hình chữ nhật có đáp án 

+) -x2 + 4 = 0 ⇔ x2 = 4 ⇔ x = ±2

+) x2 + 3 = -6 ⇔ x2 = -9 (vô nghiệm vì -9< 0)

+) 4x2 + 4x = -1 ⇔ 4x2 +4x + 1 = 0 ⇔ (2x + 1)2 = 0 ⇔ 2x + 1 = 0 ⇔ x = -Trắc nghiệm Diện tích hình chữ nhật có đáp án 

Đáp án cần chọn là: C

28 tháng 12 2019

25 tháng 11 2018

a) Thay x = 2 vào bất phương trình ta được: x2 = 22 = 4 > 0

Vậy x = 2 là một nghiệm của bất phương trình x2 > 0.

Thay x = -3 vào bất phương trình ta được x2 = (-3)2 = 9 > 0

Vậy x = -3 là một nghiệm của bất phương trình x2 > 0.

b) Với x = 0 ta có x2 = 02 = 0

⇒ x = 0 không phải nghiệm của bất phương trình x2 > 0.

Vậy không phải mọi giá trị của ẩn x đều là nghiệm của bất phương trình đã cho.

15 tháng 1 2021

a) Ta có \(\left|x\right|\ge0\) nên |x| + 1 > 0 với mọi x. Do đó phương trình đã cho vô nghiệm.

b) Tương tự, phân tích \(x^2+2x+3=\left(x+1\right)^2+2>0\)