K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2018

Vì số nào cũng \(⋮\)

Không có số nào là \(⋮̸\)

\(\Rightarrow\)đpcm

17 tháng 11 2021

con khong biet

26 tháng 12 2022

Sai hết :)

10 tháng 1 2022

\(A=2+2^2+2^3+2^4+...+2^{59}+2^{60}\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)

\(=3.\left(2+2^3+...+2^{59}\right)\) ⋮ 3

5 tháng 8 2017

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các bài toán hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

29 tháng 10 2021

Tôi  tên  là  Ngọc  Anh  . Năm  nay  Tôi 11 tuổi.  Tôi  không  biết  bài  này  

28 tháng 10 2022

câu a của bạn thiếu 2 mũ 2

 

21 tháng 7 2016

Ta có:

C = 41 + 42 + 43 + .... + 460         có (60 - 1) : 1 + 1 = 60 số hạng

C = (41 + 42) + .... + (459 + 460)

C = 41 . (1 + 4)  + .... + 459 . (1 + 4)

C = 41 . 5 + .... + 459 . 5

C = 5 . (41 + .... + 459) chia hết cho 5

=> C chia hết cho 5 (Điều phải chứng minh)

Vì C chia hết cho 5 nên C chia cho 5 sẽ có thương là 41 + .... + 459

Ủng hộ mk nha !!! ^_^

15 tháng 7 2016

                  \(B=3+3^2+...+3^{60}\)

                 Số số hạng là (60 - 1) : 1 + 1 = 60 số hạng

                  \(B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\)

                 \(B=3.\left(1+3\right)+3^3.\left(1+3\right)+...+3^{59}.\left(1+3\right)\)

                  \(B=3.4+3^3.4+...+3^{59}.4\)

                 \(B=4.\left(3+3^3+...+3^{59}\right)\)

               Vì 4 chia hết cho 4 nên B chia hết cho 4 (Điều phải chứng tỏ)

                 Ủng hộ mk nha !!! ^_^

30 tháng 10 2021

Ta có :

\(A=3+3^2+3^3+3^4+3^5+3^6+...+3^{58}+3^{59}+3^{60}\)

\(\Rightarrow A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\)

\(\Rightarrow A=3.\left(3^0+3^1+3^2\right)+3^4.\left(3^0+3^1+3^2\right)+...+3^{58}.\left(3^0+3^1+3^2\right)\)

\(\Rightarrow A=3.13+3^4.13+3^7.13+..+3^{58}.13\)

\(\Rightarrow A=\left(3+3^4+...+3^{58}\right).13⋮13\)

23 tháng 7 2016

1) + S = 5 + 52 + 53 + ... + 596 (có 96 số; 96 chia hết cho 6)

S = (5 + 52 + 53 + 54 + 55 + 56) + (57 + 58 + 59 + 510 + 511 + 512) + ... + (591 + 592 + 593 + 594 + 595 + 596)

S = (5 + 54) + (52 + 55) + (53 + 56) + (57 + 510) + ... + (593 + 596)

S = 5.(1 + 53) + 52.(1 + 52) + 53.(1 + 53) + 57.(1 + 53) +  ... + 593.(1 + 53)

S = 5.126 + 52.126 + 53.126 + 57.126 + ... + 593.126

S = 126.(5 + 52 + 53 + 57 + ... + 593) chia hết cho 126

+ Do 5 + 52 + 53 + 57 + ... + 593 chia hết cho 5 mà 126 chia hết cho 2

=> S chia hết cho 10 => S có tận cùng là 0

2) 162008 - 82000

= (...6) - (84)500

= (...6) - (...6)500

= (...6) - (...6)

= (...0) chia hết cho 10

3) 13 + 23 + 33 + 43 + 53 + 63 + 73 + 83 + 93 + 103 = (x + 12)2

=> 1 + 8 + 27 + 64 + 125 + 216 + 343 + 512 + 729 + 1000 = (x + 1)2

=> (1 + 729) + (8 + 512) + (27 + 343) + (64 + 216) + 125 + 1000 = (x + 1)2

=> 730 + 520 + 370 + 280 + 1125 = (x + 1)2

=> (730 + 370) + (520 + 280) + 1125 = (x + 1)2

=> 1100 + 800 + 1125 = (x + 1)2 

=> 3025 = (x + 1)2, vô lí

24 tháng 7 2016

1) + S = 5 + 52 + 53 + ... + 596 (có 96 số; 96 chia hết cho 6)

S = (5 + 52 + 53 + 54 + 55 + 56) + (57 + 58 + 59 + 510 + 511 + 512) + ... + (591 + 592 + 593 + 594 + 595 + 596)

S = (5 + 54) + (52 + 55) + (53 + 56) + (57 + 510) + ... + (593 + 596)

S = 5.(1 + 53) + 52.(1 + 52) + 53.(1 + 53) + 57.(1 + 53) +  ... + 593.(1 + 53)

S = 5.126 + 52.126 + 53.126 + 57.126 + ... + 593.126

S = 126.(5 + 52 + 53 + 57 + ... + 593) chia hết cho 126

+ Do 5 + 52 + 53 + 57 + ... + 593 chia hết cho 5 mà 126 chia hết cho 2

=> S chia hết cho 10 => S có tận cùng là 0

18 tháng 12 2021

gải giúp mình với