Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A=n(n+2)(n+7)
TH1: n=3k => A hiển nhiên chia hết cho 3
TH2: Nếu n=3k+1 => A=(3k+1)(3k+1+2)(3k+1+7)=(3k+1).3(k+1)(3k+8) chia hết cho 3
TH3: Nếu k=3k+2 => A=(3k+2)(3k+2+2)(3k+2+7)=(3k+2)(3k+4).3(k+3) chia hết cho 3
Vậy A chia hết cho 3 với mọi n thuộc Z
Bài 2 :
n + 5 chia hết cho n
=> 5 chia hết cho n
=> n thuộc Ư(5) = {1 ; 5}
b) 2016.(n - 3) + 11 chia hết cho n - 3
=> 11 chia hết cho n - 3
=> n - 3 thuộc Ư(11) = {1 ; 11}\
=> n = {4 ; 14}
c) n2 + 2n + 3 chia hết cho n + 2
n.(n + 2) + 3 chia hết cho n + 2
=> 3 chia hết cho n + 2
=> n + 2 thuộc U(3) = {1 ; 3}
=> n = {-1 ; 1}
a) 2(x + 2) + 3x = 29
2x + 4 + 3x = 29
5x = 29 - 4 = 25
x = 5
b) 720:[41 - (2x-5)]=23 . 5
41 - (2x - 5) = 720 : 40 = 180
2x - 5 = 41 - 180 = -139
2x = -139 + 5 = -134
x = (-134) : 2 = -67
c) (x + 1) + (x + 2) + ..... + (x + 100) = 5750
x + 1 + x + 2 + ........ + x + 100 = 5750
100x + (1 + 2 + 3 + ........... + 100) = 5750
100x + 5050 = 5750
100x = 700
x = 7
Tổng các chữ số của số 111...1 (n số 1 là: 1.n
=>tổng các chữ số của số A là: 8n+1n=n(8+10=9n chia hết cho 9
Vì toongr các chữ số của A chia hết cho 9
nên A chia hết cho 9 (đpcm)
mình phải nộp trước 14h15 thế nên mình cần gấp
plsss