Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra , ta có 3 trg hợp n :
TH1 : n chia hết cho 3 .
Nếu n chia hết cho 3 thì tích trên đã đc chia hết cho 3 .
TH2 : n chia 3 dư 1
Nếu n chia 3 dư 1 thì (n + 2 ) sẽ chia hết cho 3 => tích n(n+2)(n+7) chia hết cho 3 , vì nếu trong tích có một thừa số chia hết cho 3 thì cả tích sẽ chia hết cho 3 .
TH3 : n chia 3 dư 2
Nếu n chia 3 dư 2 thì (n+7) sẽ chia hết cho 3 => tích n(n+2)(n+7) chia hết cho 3 , vì nếu trong tích có một thừa số chia hết cho 3 thì cả tích sẽ chia hết cho 3 .
Vậy : Với mọi trg hợp n thì tích n(n+2)(n+7) đều chia hết cho 3 .
ta có: n(n+2)(n+7) \(⋮\)3.
đặt A = n(n+2)(n+7)
vì n là số tự nhiên. khi chia n cho 3 ta có 3 dạng:n=3k; n=3k+1; n=3k+2 ( k\(\in\) N )
nếu n=3k => n \(⋮\)3
=> A \(⋮\)3. (1)
nếu n=3k+1 => n+2=3k+1+2
=3k+3 \(⋮\)3
=> A \(⋮\)3 (2)
nếu n=3k+2 => n+7=3k+2+7
=3k+9 \(⋮\)3
=> A \(⋮\)3 (3)
từ (1);(2) và (3) => A \(⋮\)3 với mọi n .
vậy n(n+2)(n+7) \(⋮\)3.với mọi n .
chcs năm mới vui vẻ, k nha...
n(n+1)(2n+1) = n(n+1)(n+2+n-1)=n(n+1)(n+2)+(n-1)(n+1)n
ba số liên tiếp chia hết cho 3
tick minh nha
20124n+3-3
=20124n.20123-3
=.......6 . ........8 - 3
=.............5 chia hết cho 5
2. Câu hỏi của lekhanhhung - Toán lớp 7 - Học toán với OnlineMath
Đặt A=n(n+2)(n+7)
TH1: n=3k => A hiển nhiên chia hết cho 3
TH2: Nếu n=3k+1 => A=(3k+1)(3k+1+2)(3k+1+7)=(3k+1).3(k+1)(3k+8) chia hết cho 3
TH3: Nếu k=3k+2 => A=(3k+2)(3k+2+2)(3k+2+7)=(3k+2)(3k+4).3(k+3) chia hết cho 3
Vậy A chia hết cho 3 với mọi n thuộc Z