K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2016

\(x^2-3x+5=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}>0\) với mọi số thực x

15 tháng 5 2018

xin lỗi bạn mình ngu bất đẳng thức lắm

8 tháng 5 2016

Có x8−x7+x5−x4+x3−x+1=x10+x5+1x2+x+1
x10+x5+1=(x5+12)2+34
⇒x10+x5+1>0
x2+x+1=(x+12)2+34>0

⇒x8−x7+x5−x4+x3−x+1>0

T

ích mk nha bạn

8 tháng 5 2016

Viết lại câu trả lời được "Copy" trên mạng bởi "Thần hộ vệ ...."

\(x^8-x^7+x^5-x^4+x^3-x+1=\frac{x^{10}+x^5+1}{x^2+x+1}=\frac{\left(x^5+\frac{1}{2}\right)^2+\frac{3}{4}}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}>0\)

NV
19 tháng 6 2020

- Với \(x=0\Rightarrow144>0\) (đúng)

- Với \(x\ne0\)

\(VT=\left(x-2\right)\left(x-6\right)\left(x+3\right)\left(x+4\right)+57x^2\)

\(=\left(x^2+12-8x\right)\left(x^2+12+7x\right)+57x^2\)

\(=x^2\left[\left(x+\frac{12}{x}-8\right)\left(x+\frac{12}{x}+7\right)+57\right]\)

\(=x^2\left[\left(x+\frac{12}{x}-8\right)^2+15\left(x+\frac{12}{x}-8\right)+57\right]\)

\(=x^2\left[\left(x+\frac{12}{x}-8+\frac{15}{2}\right)^2+\frac{3}{4}\right]>0;\forall x\ne0\)

Vậy...

16 tháng 5 2023

Anh gửi riêng phần phân tích này

\(x^6-2x^5y+2xy^5+y^6=\left(x^2+y^2\right)\left(x^4-x^2y^2+y^4\right)-2xy\left(x^2+y^2\right)\left(x^2-y^2\right)=\left(x^2+y^2\right).\left(x^4-x^2y^2+y^4-2xy\left(x^2-y^2\right)\right)=\left(x^2+y^2\right)\left(\left(x^4-2x^2y^2+y^4\right)-2xy\left(x^2-y^2\right)+x^2y^2\right)\)Viết tiếp cái ngoặc to thành bình phương là ra cái anh vt chỗ trên đầu nhé

Thử xem có đc ko

16 tháng 5 2023

Vẫn đề đó hả em

Câu này dùng BĐT Schur là ra luôn cx đc, nhưng mà thế thì hơi mất hứng, anh thử đề xuất phương án này ha

VT=\(cyc\sum x^5.\left(x-y+z\right)\) Gấp đôi vế trái lên và phá ngoặc ra nhóm  về kiểu này

2.VT=(x^6-2x^5y+2xy^5+y^6)+.......tương tự như thế ha

       Giờ chỉ cần mỗi cái ngoặc này >=0 là cả lũ >=0 do tương tự

Mà \(x^6-2x^5y+2xy^5+y^6=\left(x^2+y^2\right).\left(x^2-xy-y^2\right)^2\)  (Cái này em nhóm 2 cái cuối, 2 cái giữa xong triển khai ra là đc)

       Dễ thấy x^2+y^2>=0, cái ngoặc kia là bình phương cũng >=0

 Do đó cái TH kia >=0. Các th còn lại thì cx tương tự

 Cộng vế với vế suy ra 2VT>=0, Hay VT>=0 (đpcm)

a: Vì x<3 nên x-3<0

=>3x-9<0

f(x)=|3x-9|=-3x+9

=>Hàm số nghịch biến

b: \(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\left(\dfrac{x_1+1}{x_1}-\dfrac{x_2+1}{x_2}\right):\left(x_1-x_2\right)\)

\(=\dfrac{x_1x_2+x_2-x_1x_2-x_1}{x_1x_2}\cdot\dfrac{1}{x_1-x_2}=\dfrac{-1}{x_1x_2}\)

Vì \(x_1>0;x_2>0\)

nên \(x_1x_2>0\)

\(\Leftrightarrow-\dfrac{1}{x_1x_2}< 0\)

=>f(x) nghịch biến khi x>0