Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo nhé bạn:
https://olm.vn/hoi-dap/detail/7431752799.html
~Std well~
#Mina
Gọi số lẻ thứ nhất là 2k - 1 .
Gọi số lẻ thứ 2 là 2k + 1 .
Ta có :
\(\left(2k-1\right)^2-\left(2k+1\right)^2\)
\(=\left(2k-1+2k+1\right)\left(2k-1-2k-1\right)\)
\(=4k.\left(-2\right)=-8k⋮8\)
Vậy ............................
a)gọi hai số lẽ liên tiếp đó là: 2a+1;2a+3
ta có:
(2a+1)2-(2a+3)2=(2a+1+2a+3)(2a+1-2a-3)
=(4a+4).(-2)=4(a+1)(-2)=-8(a+1)
vì -8 chia hết cho 8 =>-8(a+1) chia hết cho 8
vậy hiệu bình phương của 2 số lẻ liên tiếp chia hết cho 8
b) gọi số lẽ đó là 2k+1
ta có:
(2k+1)2-1=(2k+1-1)(2k+1+1)
=2k.(2k+2)
=4k2+4k
Vì 4k2 chia hết cho 4 ; 4k chia hết cho 2
=>4k2+4k chia hết cho 8
Vậy Bình phương của 1 số lẻ bớt đi 1 thì chia hết cho 8
Câu 2
Gọi tổng bình phương hai số lẻ là (2K+1)^2+(2H+1)^2
Ta có: (2K+1)^2+(2H+1)^2=4K^2+4K+1+4H^2+4H+1
=4(K^2+K+H^2+H)+2
Vì 4(K^2+K+H^2+H) chia hết cho 4
=>4(K^2+K+H^2+H)+2 ko chia hết cho 4
Mk biết làm vậy thôi nha
Gọi hai số lẻ bất kì là 2a + 1 và 2b + 1 (a, b ∈ Z).
Hiệu bình phương của hai số lẻ đó bằng:
(2a + 1)2 – (2b + 1)2
= (4a2 + 4a + 1) – (4b2 + 4b + 1)
= (4a2 + 4a) – (4b2 + 4b)
= 4a(a + 1) – 4b(b + 1)
Tích của hai số tự nhiên liên tiếp luôn chia hết cho 2
⇒ a.(a + 1) ⋮ 2 và b.(b + 1) ⋮ 2.
⇒ 4a(a + 1) ⋮ 8 và 4b(b + 1) ⋮ 8
⇒ 4a(a + 1) – 4b(b + 1) ⋮ 8.
Vậy (2a + 1)2 – (2b + 1)2 chia hết cho 8 (đpcm).
Gọi hai số lẻ đó là 2k+1 và 2k+3 (k\(\in\)Z)
Ta có:
(2k+3)\(^2\)- (2k+1)\(^2\)= (2k+3+2k+1)(2k+3-2k-1)
= (4k+4).2
=8.(k+1)
Vì 8\(⋮\)8 \(\Rightarrow\)8.(k+1) \(⋮\)8
\(\Leftrightarrow\) (2k+3)\(^2\)-(2k+1)\(^2\)\(⋮\)8 (đpcm)
gọi 2 số lẻ bất kì lần lượt là 2a + 1 và 2a + 3
Cần chứng minh (2a + 1)2 - (2a + 3)2 chia hết cho 8
có: (2a + 1)2 - (2a + 3)2 = 4x2 + 4x + 1 - 4x2 - 12x - 9 = -8x - 8 = -8 (x + 1)
-8 (x + 1) chia hết cho 8
=> (đpcm)
Gọi 2 lẻ bất kì là a và b
Phải chứng minh a2-b2 chia hết cho 8
Do a2 và b2 là số chính phương nên chia 8 chỉ có thể dư 0;1 hoặc 4. Mà a, b lẻ nên a2 và b2 lẻ suy ra a2 và b2 chia 8 dư 1
Suy ra a2-b2 chia hết cho 8
Chứng tỏ hiệu các bình phương của 2 số lẻ bất kì thí chia hết cho 8