K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2018

Gọi hai số lẻ bất kì là 2a + 1 và 2b + 1 (a, b ∈ Z).

Hiệu bình phương của hai số lẻ đó bằng:

   (2a + 1)2 – (2b + 1)2

= (4a2 + 4a + 1) – (4b2 + 4b + 1)

= (4a2 + 4a) – (4b2 + 4b)

= 4a(a + 1) – 4b(b + 1)

Tích của hai số tự nhiên liên tiếp luôn chia hết cho 2

⇒ a.(a + 1) ⋮ 2 và b.(b + 1) ⋮ 2.

⇒ 4a(a + 1) ⋮ 8 và 4b(b + 1) ⋮ 8

⇒ 4a(a + 1) – 4b(b + 1) ⋮ 8.

Vậy (2a + 1)2 – (2b + 1)2 chia hết cho 8 (đpcm).

24 tháng 4 2017

Giải bài 3 trang 130 SGK Toán 8 Tập 2 | Giải toán lớp 8

17 tháng 10 2017

Gọi hai số lẻ đó là 2k+1 và 2k+3 (k\(\in\)Z)

Ta có:

(2k+3)\(^2\)- (2k+1)\(^2\)= (2k+3+2k+1)(2k+3-2k-1)

= (4k+4).2

=8.(k+1)

Vì 8\(⋮\)8 \(\Rightarrow\)8.(k+1) \(⋮\)8

\(\Leftrightarrow\) (2k+3)\(^2\)-(2k+1)\(^2\)\(⋮\)8 (đpcm)

26 tháng 5 2016

gọi 2 số lẻ bất kì lần lượt là 2a + 1 và 2a + 3

Cần chứng minh (2a + 1)- (2a + 3)2 chia hết cho 8

có: (2a + 1)- (2a + 3)2 = 4x2 + 4x + 1 - 4x - 12x - 9  = -8x - 8 = -8 (x + 1) 

-8 (x + 1) chia hết cho 8  

=> (đpcm)

26 tháng 5 2016

Gọi 2  lẻ bất kì là a và b

Phải chứng minh a2-b2 chia hết cho 8

Do a2  và b2 là số chính phương nên chia 8 chỉ có thể dư 0;1 hoặc 4. Mà a, b lẻ nên a2  và b2  lẻ suy ra a2  và b2 chia 8 dư 1

Suy ra a2-b2 chia hết cho 8

Chứng tỏ hiệu các bình phương của 2 số lẻ bất kì thí chia hết cho 8

7 tháng 8 2016

Gọi 2k+1 va 2p+1 la các số lẻ
hieu cac binh phuong cua 2 so le la`:
( 2k + 1 )^2 - ( 2p+11)^2 = ( 2k + 1+2p+1)( 2k + 1-2p-1)= ( 2k +2p+2)( 2k -2p)=4(k+p+1)(k-p)
=4(k+p+1)(k+p-2p)=4(k+p+1)(k+p)-8p(k+p...
Vì 4(k+p+1)(k+p) chia hết cho 8 và 8p(k+p+1) chia hết cho 8
Vậy ( 2k + 1 )^2 - ( 2p+11)^2 chia hết cho 8

7 tháng 8 2016

Gọi 2 số lẻ đó lần lượt là 2k+1 và 2a+1

(2k+1)2-(2a+1)2

= 4k2+4k+1-4a2-4a-1

= 4(k2+k+a2+a)

Như vậy ta đã chứng minh được nó chia hết cho 4 giờ ta chứng minh k2+k+a2+a chia hết cho 2, 

Thật vậy ta có k2+k=k(k+1) ; a2+a=a(a+1)

Do 2 số tự nhiên liên tiếp luôn chia hết cho 2 suy ra a2+a và k2+k chia hết cho 2

Suy ra a2+a+k2+k chia hết cho 2 

Như vậy bài toán được chứng minh

30 tháng 6 2016

gọi 2 số lẻ đó lần lượt là: 2a + 1 và 2a + 3

cần chứng minh    (2a + 1)2 - (2a + 3)2 chia hết cho 8

có:  (2a + 1)2 - (2a + 3)2 = 4a2 + 4a + 1 - 4a2 - 12a - 9 = -8a - 8 = -8 (a + 1)

-8 (a + 1) chia hết cho 8

=> đpcm

30 tháng 6 2016

bạn ơi đây là 2 số lẻ bất kì thì như vậy có đúng ko ạ

30 tháng 6 2016

Ta đã biết số chính phương chia 8 chỉ có thể dư 0; 1;4 => bình phương của 1 số lẻ chia 8 dư 1

=> hiệu các bình phương của 2 số lẻ bất kì chia hết cho 8

=> đpcm

Ủng hộ mk nha ♡_♡☆_☆

22 tháng 10 2018

 Với k, l thuộc Z

Đặt A=\(\left(2k+1\right)^2-\left(2l+1\right)^2=\left(2k+1-2l-1\right)\left(2k+1+2l+1\right)\)

\(=2\left(k-l\right).2\left(k+l+1\right)=4\left(k-l\right)\left(k+l+1\right)\)

k-l là chẵn => k-l chia hết cho 2=> A chia hết cho 8 

k-l là số lẻ => k+l là số lẻ => k+l+1 chẵn =>k+l+1 chia hết cho 2=> A chia hết cho 8

22 tháng 10 2018

\(\left(2k+1\right)^2-\left(2k+3\right)^2\)

=\(\left(4k^2+4k+1\right)-\left(4k^2+12k-9\right)\)

=\(4k^2+4k+1-4k^2-12k-9\)

=\(-8k-8\)

=\(8\left(-k-1\right)⋮8\)

Vậy...........................

Mik ko biết có đúng ko nx

đúng thì k nhé

16 tháng 11 2017

Gọi 2 số lẻ đó có dạng 2k+1 và 2q+1 ( k,q thuộc N )

Xét : (2k+1)^2-(2q+1)^2 = (2k+1-2q-1).(2k+1+2q+1) = (2k-2q).(2k+2q+2) = 4.(k-q).(k+q+1)

Ta thấy : k+q+1-(k-q) = k+q+1-k+q = 2q+1 lẻ

=> trong 2 số k+q+1 và k-q có 1 số chẵn => (k+q+1).(k-q) chia hết cho 2

=> (2k+1)^2-(2q+1)^2 chia hết cho 8

=> ĐPCM 

k mk nha

16 tháng 11 2017

Theo đề ta có hiệu ( 2a+1 )^2 - ( 2b+1 )^2 

 Có ( 2a+1 )^2 = 2^2a^2 + 2a + 2a - 1 = 4a^2 + 4a - 1 = 4a( a - 1 ) - 1 

 Có ( 2b+1 )^2 = 2^2b^2 + 2b + 2b - 1 = 4b^2 + 4b - 1 = 4b( b - 1 ) - 1 

 Vậy giờ ta được đa thức [ 4a( a - 1 ) - 1 ] - [ 4b( b - 1 ) - 1 ]

 Có a( a - 1 ) và b( b - 1 ) là tích của hai số tự nhiên liên tiếp => chúng chia hết cho 2 

Thế a( a - 1 ) = 2x ; b( b - 1 ) = 2y

 Ta được ( 4.2y - 1 ) - ( 4.2x - 1 ) = ( 8y - 1 ) - ( 8x - 1 ) = 8y - 1 - 8x + 1 = 8y - 8x = 8( y - x ) 

=> Hiệu của bình phương hai số lẻ bất kì luôn chia hết cho 8 

8 tháng 5 2018

bài 1 : \(a^2-b^2-4ab+4\)

\(=\left(a-b\right)\left(a+b\right)-4\left(ab-1\right)\)

29 tháng 10 2018

Gọi hai số lẻ bất kì là 2a + 1 và 2b + 1 (a, b ∈ Z)

Hiệu bình phương của hai số lẻ đó bằng :

\({\left( {2a{\rm{ }} + {\rm{ }}1} \right)^2}-{\rm{ }}{\left( {2b{\rm{ }} + {\rm{ }}1} \right)^2} = \left( {4{a^2} + {\rm{ }}4a{\rm{ }} + {\rm{ }}1} \right){\rm{ }}-{\rm{ }}\left( {4{b^2} + {\rm{ }}4b{\rm{ }} + 1} \right)\)

\(= \left( {4{a^2} + {\rm{ }}4a} \right){\rm{ }}-{\rm{ }}\left( {4{b^2} + {\rm{ }}4b} \right){\rm{ }} = {\rm{ }}4a\left( {a{\rm{ }} + 1} \right){\rm{ }}-{\rm{ }}4b\left( {b{\rm{ }} + {\rm{ }}1} \right)\)

Vì tích của hai số nguyên liên tiếp luôn chia hết cho 2 nên a(a+1) và b(b+1) chia hết cho 2.

Do đó 4a(a + 1) và 4b(b + 1) chia hết cho 8

4a(a + 1) – 4b(b + 1) chia hết cho 8.

Vậy \({\left( {2a{\rm{ }} + {\rm{ }}1} \right)^2}-{\rm{ }}{\left( {2b{\rm{ }} + {\rm{ }}1} \right)^2}\) chia hết cho 8.

29 tháng 10 2018

Gọi hai số lẻ bất kì là \(2a+1\) và \(2b+1\)

Khi đó hiệu bình phương của hai số là \(A=\left(2a+1\right)^2-\left(2b+1\right)^2=4a^2+4a-4b^2-4b=4\left(a^2-b^2+a-b\right)=4\left(a-b\right)\left(a+b+1\right)\)

Ta thấy \(\left(a-b\right)\left(a+b+1\right)\) luôn chia hết cho 2 nên A luôn chia hết cho 8.