K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2022

Tham khảo:

Đường phân giác ngoài tại một đỉnh của một tam giác là đường thẳng chia cạnh đối diện thàng hai đoạn thẳng tỉ lệ với hai cạnh kề với hai đoạn thẳng ấy. Ví dụ: Trong tam giác ABC, có AD là phân giác ngoài của góc A và AD cắt BC tại D. Như vậy, ta có: DB/DC = AB/AC.

HT

14 tháng 3 2022

TL: 

Tham khảo: Đường phân giác ngoài tại một đỉnh của một tam giác là đường thẳng chia cạnh đối diện thàng hai đoạn thẳng tỉ lệ với hai cạnh kề với hai đoạn thẳng ấy. Ví dụ: Trong tam giác ABC, có AD là phân giác ngoài của góc A và AD cắt BC tại D. Như vậy, ta có: DB/DC = AB/AC.  

k cho mik nhé 

@@@@@@@@@@@@@@@@@@@@@@@ 

HT

10 tháng 9 2018

A B C N M E F G H I K

a) Kéo dài các tia AN; AE; AM; AF cho chúng cắt đường thẳng BC theo thứ tự tại các điểm G;H;I;K.

Xét \(\Delta\)ABI có: BM  là phân giác ^ABI và BM vuông góc AI (tại M) => \(\Delta\)ABI cân tại B

=> BM đồng thời là đường trung tuyến \(\Delta\)ABI => M là trung điểm AI

C/m tương tự, ta có: N;E;F lần lượt là trung điểm của AG;AH;AK

Xét \(\Delta\)GAH: N là trung điểm AG; E là trung điểm AH => NE là đường trung bình \(\Delta\)GAH

=> NE // GH hay NE // BC (1)

Tương tự: MF // BC (2);  NF // BC (3)

Từ (1); (2) và (3) => 4 điểm M;N;E;F thẳng hàng (Theo tiên đề Ơ-clit) (đpcm).

b) Theo câu a ta có: NF là đường trung bình \(\Delta\)AGK => \(NF=\frac{GK}{2}=\frac{BG+BC+CK}{2}\)(*)

Lại có: \(\Delta\)ABG cân ở B; \(\Delta\)ACK cân ở C (câu a) nên BG = AB; CK = AC

Thế vào (*) thì được: \(NF=\frac{AB+BC+AC}{2}\),

KL: ...

ADAD là phân giác trong (trường hợp phân giác ngoài chứng minh tương tự) của tam giác ABCABC

Ta có: BDDC=SABDSACD=AB.AD.sinA2AC.AD.sinA2=ABAC