Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/13 . 8/13 + 5/13 . 1/13 - 14/13
= 1/13 . (8/13 + 5/13) - 14/13
= 1/13 . 13/13 - 14/13
= 1/13 . 1 - 14/13
= 1/13 - 14/13
= -13/13
= -1
Tổng quát: \(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\) (với mọi số tự nhiên n khác 0)
Ta có: \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{99.100}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}<\frac{1}{2}\) (vì \(\frac{1}{100}>0\) )
=>đpcm
gọi A=1/21+1/22+1/23+...+1/40
chia A thành 2 nhóm A1 và A2( A1+A2=A)
ta có A1=1/21+1/22+1/23+...+1/30>1/30+1/30+1/30+...+1/30(có 10 phân số 1/30)
A1>10/30=1/3(1)
ta có A2=1/31+1/32+1/33+...+1/40>1/40+1/40+1/40+...+1/40(có 10 phân số 1/40)
A2>10/40=1/4(2)
từ (1)và (2) suy ra
A1+A2>1/3+1/4
A>7/12(3)
ta có A1=1/21+1/22+1/23+...+1/20<1/20+1/20+1/20+...+1/20(có 10 phân số 1/20)
A1<10/20=1/2(4)
ta có A2=1/31+1/32+1/33+...+1/40<1/30+1/30+1/30+...+1/30(có 10 phân số 1/30)
A2<10/30=1/3(5)
từ (4)và (5) suy ra
A1+A2<1/2+1/3
A<5/6(6)
từ (3),(6) suy ra 7/12<1/21+1/22+1/23+...+1/40<5/6
cái A1+1/21+1/22+1/23+1/24+1/25+...+1/30<1/20+1/20+1/20+1/20+...+1/20 nhé
\(S = \frac{1}{3} +\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28} \)
\(S=\frac{1}{3}+\frac{1}{3}.\frac{1}{2}+\frac{1}{5}.\frac{1}{2}+\frac{1}{5}.\frac{1}{3}+\frac{1}{7}.\frac{1}{3}+\frac{1}{7}.\frac{1}{4} \)
\(S=\frac{1}{3}(1+\frac{1}{2})+\frac{1}{5}(\frac{1}{2}+\frac{1}{3})+\frac{1}{7}(\frac{1}{3}+\frac{1}{4})\)
\(S=\frac{1}{3}.\frac{3}{2}+\frac{1}{5}.\frac{5}{6}+\frac{1}{7}.\frac{7}{12}\)
\(S=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}\)
\(S=\frac{6}{12}+\frac{2}{12}+\frac{1}{12}\)
\(S=\frac{9}{12}\)
\(S=\frac{3}{4}\)
Ta có : \(B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}\)
Mà \(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};...;\frac{1}{8^2}<\frac{1}{7.8}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}=1-\frac{1}{8}<1\)
Vậy B < 1
Ta thấy: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{50^2}\)<\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{49.50}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{50^2}\)<\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{49}-\frac{1}{50}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{50^2}\)<\(1-\frac{1}{50}\)
Suy ra:
A=\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{50^2}\)<\(\frac{1}{1^2}+\left(1-\frac{1}{50}\right)\)
A<1+1-\(\frac{1}{50}\)
A<2-\(\frac{1}{50}\)<2
Vậy A<2(đpcm)
Ta có :
\(\frac{1}{2}+\frac{1}{14}+\frac{1}{35}+\frac{1}{65}+\frac{1}{104}+\frac{1}{152}\)
\(=\frac{1}{1.2}+\frac{1}{2.7}+\frac{1}{7.5}+\frac{1}{5.13}+\frac{1}{13.8}+\frac{1}{8.19}\)
Giá trị không đổi khi cả tử và mẫu cùng nhân với 2, ta được :
\(\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+\frac{2}{10.13}+\frac{2}{13.16}+\frac{2}{16.19}\)
\(=\frac{2}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+\frac{3}{13.16}+\frac{3}{16.19}\right)\)
\(=\frac{2}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{16}-\frac{1}{19}\right)\)
\(=\frac{2}{3}.\left(1-\frac{1}{19}\right)=\frac{2}{3}.\frac{18}{19}=\frac{12}{19}\)
\(A=\frac{1}{2}+\frac{1}{14}+\frac{1}{35}+\frac{1}{65}+\frac{1}{104}+\frac{1}{152}=\frac{1}{2}.\left(\frac{1}{4}+\frac{1}{28}+\frac{1}{70}+\frac{1}{130}+\frac{1}{208}+\frac{1}{304}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+\frac{1}{13.16}+\frac{1}{16.19}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+\frac{1}{16}-\frac{1}{19}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{19}\right)=\frac{9}{19}\)
Bạn xem lại đề.
Lấy máy tính bấn tổng kia thì bé hơn 1/2. Xem lại đề