K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2015

Ta có :

\(\left(...3\right)^{1999}=\left(...3\right)^{4.499}.\left(...3\right)^3=\left(...1\right).\left(...7\right)=\left(...7\right)\)

Vậy 9999931999 có tận cùng là 7

\(\left(...3\right)^{1997}=\left(...3\right)^{3.499}.\left(...3\right)^1=\left(...1\right).\left(...3\right)=\left(...3\right)\)

Vậy 5555531997 có tận cùng là 3

Do đó \(S=\left(...7\right)-\left(...3\right)=\left(...4\right)\) có tận cùng là 4 nên không chia hết cho 5.

Đề sai.

19 tháng 9 2020

a) Ta có: \(S=5+5^2+5^3+...+5^{96}\)

        \(\Leftrightarrow S=\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+...+\left(5^{93}+5^{96}\right)\)

    Vì mỗi cặp của đa thức  \(S\)có hai hạng tử nên tổng số cặp là: \(\frac{96}{2}=48\)( cặp )

         \(\Rightarrow\)Đa thức  \(S\)không dư số nào

        \(\Leftrightarrow S=\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+...+\left(5^{93}+5^{96}\right)\)

        \(\Leftrightarrow S=5.\left(5^0+5^3\right)+5^2\left(5^0+5^3\right)+5^3.\left(5^0+5^3\right)+...+5^{93}.\left(5^0+5^3\right)\)

        \(\Leftrightarrow S=5.126+5^2.126+5^3.126+...+5^{93}.126\)

        \(\Leftrightarrow S=\left(5+5^2+5^3+...+5^{93}\right).126⋮126\)

Vậy \(S⋮126\)

9 tháng 8 2015

S=(5+5^2+5^3)+(5^4+5^5+5^6)+...+(5^28+5^29+5^30) 

=>Có 30:3=10 nhóm

=>S=5(1+5+5^2)+...+5^28(1+5+5^2)

=>S=5.31+...+5^28.31

S=31(5+....+5^28) chia hết cho 31

nhớ bấm đúng cho mình bạn nhé

5 tháng 11 2017

ban kia lam dung roi do

k tui nha

thanks

15 tháng 6 2016

Ta có : \(5=1\) ( mod 4 ) 

 => \(5^n=1\)( mod 4 ) 

\(\Rightarrow5^n-1=0\)( mod 4 )

\(\Rightarrow5^n-1\)chia hết cho 4

\(\leftrightarrowđpcm\)

15 tháng 6 2016

Ta có : 5 mũ n có cơ số là 5 

=> 5 mũ n tận cùng là 25 (với n >1)

+, n = 0

=> 5 mũ n - 1 = 1 - 1 = 0 chia hết cho 4

+, n =1

=> 5 mũ n - 1 = 5 - 1 = 4 chia hết cho 4

+, n > 1

=> 5 mũ n - 1 =  số có tận cùng là 25 - 1 = số có tận cùng là 24 chia hết cho 4 ( vì 24 chia hết cho 4)

=> đpcm

18 tháng 10 2015

\(S=\left(3+3^{3+3^3}\right)+.....+\left(3^{97}+3^{98}+3^{99}\right)\)

\(S=39.1+39.3^3+....+39.3^{96}=>S=39\left(1+3^3+3^6+.....+3^{96}\right)\)

Vậy S chia hết cho 39