Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ƯCLN(21n+4,14n+3)=d
=>21n+4\(⋮\)d =>42n+8\(⋮\)d (1)
=>14n+3\(⋮\)d =>42n+9\(⋮\)d (2)
Từ (1) và (2) => (42n+9)-(42n+8)\(⋮\)d =>1\(⋮\)d =>d=1 (vì d=ƯCLN)
=> \(\frac{21n+4}{14n+3}\)là phân số tối giản, với mọi n\(\in\) N (ĐCCM)
Vậy \(\frac{21n+4}{14n+3}\)là phân số tối giản với mọi n\(\in\)N
Gọi \(d=ƯC\left(n^2+4;n+5\right)\)
\(\Rightarrow n\left(n+5\right)-\left(n^2+4\right)⋮d\)
\(\Rightarrow5n-4⋮d\)
\(\Rightarrow5\left(n+5\right)-29⋮d\)
\(\Rightarrow29⋮d\)
\(\Rightarrow d=\left\{1;29\right\}\)
Phân số chưa tối giản \(\Leftrightarrow d\ne1\Rightarrow d=29\)
\(\Rightarrow n+5=29k\Rightarrow n=29k-5\)
\(1\le29k-5\le2020\Rightarrow\dfrac{6}{29}\le k\le\dfrac{2025}{29}\)
\(\Leftrightarrow1\le k\le69\Rightarrow\) có 69 số tự nhiên thỏa mãn
Gọi 2 ps đó là a/b và c/d (ƯCLN (a,b) = 1; ƯCLN (c;d) = 1)
Ta có;
\(\frac{a}{b}+\frac{c}{d}=m\) (m thuộc Z)
=> \(\frac{ad+bc}{bd}=m\)
=> ad + bc = mbd (10
Từ (1) => ad + bc chia hết cho b
Mà bc chia hết cho b
=> ad chia hết cho b
Mà (a,b) = 1
=> d chia hết cho b (2)
Từ (1) => ad + bc chia hết cho d
Mà ad chia hết cho d
=> bc chia hết cho d
Mà (c,d) = 1
=> b chia hết cho d (3)
Từ (2) và (3) =>bh = d hoặc b = -d (đpcm)
\(P=\frac{\left(2n^3+n^2\right)+\left(2n^2+n\right)-\left(2n+1\right)}{\left(2n^3+n^2\right)+\left(2n^2+n\right)+\left(2n+1\right)}\)
\(P=\frac{n^2\left(2n+1\right)+n\left(2n+1\right)-\left(2n+1\right)}{n^2\left(2n+1\right)+n\left(2n+1\right)+\left(2n+1\right)}\)
\(P=\frac{n^2\left(2n+1\right)+n\left(2n+1\right)-\left(2n+1\right)}{n^2\left(2n+1\right)+n\left(2n+1\right)+\left(2n+1\right)}\)
P không là tối giản vì cả tử và mẫu đều chia hết cho (2n +1)
VỚI MỌI n thì cứ thay vô một vài số thấy đúng rồi kết luận thôi