K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2014

Các số nguyên tố lớn hơn 3 khi chia cho 12 thì dư 11; 7; 5 hoặc 1; mà 5 + 7 = 1 + 11 = 12 chia hết cho 12 nên nếu chia 4 số dư này thành 2 nhóm là (5; 7) và (1; 11) thì với ba số bất kì đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên. (nguyên lí Dirichlet)

19 tháng 1 2016

đơn giản  là không biết 

28 tháng 8 2016

Bài 1: 5 vì 2+3=5 và 7-2=5

18 tháng 7 2018

nhớ có lời giải nha.  THANKS BẠN NHIỀU

6 tháng 11 2017

Vì p và q nguyên tố > 3 nên p và q đều lẻ => p^2 và q^2 đều chia 8 dư 1 => p^2 - q^2 chia hết cho 8 (1)

Lại có p và q nguyên tố > 3 nên p và q đều ko chia hết cho 3 => p^2 và q^2 đều chia 3 dư 1 => p^2 - q^2 chia hết cho 3 (2)

Từ (1) và (2) => p^2 - q^2 chia hết cho 24 ( vì 3 và 8 nguyên tố cùng nhau )

30 tháng 6 2015

\(p^2-1=\left(p+1\right)\left(p-1\right)\)

trước hết p là số lẻ nêm p-1 và p+1 là 2 số chẵn liên tiếp nên chia hết cho 2*4=8

mặt khác p>3 nên p-1 hoặc p+1 chia hết cho 3

(3;8)=1 nên suy ra đpcm

27 tháng 3 2016

vì p>3 nên p có dạng p=3k+1 hoặc p=3k+2 
với p=3k+1 thì p^2-1=(p+1)(p-1)=(3k+2)3k chia hết cho 3 
với p=3k+2 thì p^2-1=(p+1)(p-1)=(3k+3)(3k+1) chia hết cho 3 
vậy với mọi số nguyên tố p>3 thì p^2-1 chia hết cho 3 (1) 
mặt khác cũng vì p>3 nên p là số lẻ =>p+1,p-1 là 2 số chẵn liên tiếp 
=>trong hai sô p+1,p-1 tồn tại một số là bội của 4 
=>p^2-1 chia hết cho 8 (2) 
từ (1) và (2) => p^2-1 chia hết cho 24 với mọi số nguyên tố p>3