Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các số nguyên tố lớn hơn 3 khi chia cho 12 thì dư 11; 7; 5 hoặc 1; mà 5 + 7 = 1 + 11 = 12 chia hết cho 12 nên nếu chia 4 số dư này thành 2 nhóm là (5; 7) và (1; 11) thì với ba số bất kì đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên. (nguyên lí Dirichlet)
Khi chia một số tự nhiên cho 11 thì có 11 trường hợp về số dư là 0; 1; 2;...;10
Suy ra trong 12 số tự nhiên bất kì khi chia cho 11 thì chắc chắn có ít nhất 2 số chia cho 11 có cùng số dư nên hiệu của chúng có hai chữ số chia hết cho 11
Số có hai chữ số chia hết cho 11 phải có hai chữ số giống nhau
Vậy điều cần chứng minh là đúng
396 = 4.9.11
+) Số đã cho có 2 chữ số tận cùng là 16 chia hết cho 4 nên số dã cho chia hết cho 4
+) Tổng các chữ số của số đã cho = 1+5+5+ * + 7 + 1 + 0 + * + 4 + * + 1 + 6 = 30 + * + * + * = 30 + 6 = 36 (Vì * + * + * luôn = 6)
36 chia hết cho 9 nên Số đó cũng chia hết cho 9
+) Xét tổng các chữ số ở hàng lẻ tính từ chữ số đầu tiên của số đã cho = 1 + 5 + 7 + 0 + 4 + 1 = 18
Tổng các chữ số ở hàng chẵn = 5 + * + 1 + * + * + 6 = 12 + 6 = 18
=> Tổng các chữ số ở hàng chẵn - Tổng các chữ số ở hàng lẻ = 18 - 18 = 0 chia hết cho 11
=> số đã cho chia hết cho 11
Vậy số đã cho chia hết cho 4;9;11 => số đó chia hết cho 396
tick nha
n = 111.111.111.111.111.111.111.111.111
= 111.111.111.000.000.000.000.000.000 + ...+ 111.111.111.000.000.000 + 111.111.111
= 111.111.111.10^18 + 111.111.111.10^9 + 111.111.111 111.111.111.﴾10^18 + 10^9 + 1 ﴿ Số 111.111.111 chia hết cho 9 vì tổng các chữ số bằng 9
Số 10^18 + 10^9 + 1 chia hết cho 3 vì tổng này là một số có tổng các chữ số bằng 3
Vì 27 chia hết cho 3; 9 nên kết quả trên cũng là chia hết cho 27