Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
các thiên tài đi đâu hết rùi, bài này tui đăng thử xem sao thui mà ko có ai giải đc
a) Ta có : x - 4 chia hết cho x + 1
=> x + 1 - 5 chia hết cho x + 1
=> 5 chia hết cho x + 1
=> x + 1 thuộc Ư(5) = {-5;-1;1;5}
=> x = {-6;-2;0;4}
b) 3x - 1 chia hết cho x - 4
=> 3x - 12 + 11 chia hết cho x - 4
=> 3(x - 4) + 11 chia hết cho x - 4
=> 11 chia hết cho x - 4
=> x - 4 thuộc Ư(11) = {-11;-1;1;11}
=> x = {-7;3;5;15}
a,x-4 chia hết cho x+1
\(\Rightarrow\)x-(1+3) chia hết cho x+1
Mà x+1 chia hết cho x+1 nên 3 chia hết cho x+1
\(\Rightarrow\)x thuộc Ư(3)={1;3}
\(\Rightarrow\)x thuộc {0;2}
Ta có: \(f\left(x\right)=2x^2+3n+1\)
\(\Rightarrow\hept{\begin{cases}f\left(2n\right)=2\left(2n\right)^2+3\left(2n\right)+1\\f\left(n\right)=2n^2+3n+1\end{cases}}\Rightarrow\hept{\begin{cases}f\left(2n\right)=8n^2+6n+1\\f\left(n\right)=2n^2+3n+1\end{cases}}\)
\(\Rightarrow f\left(2n\right)-f\left(n\right)=8n^2+6n+1-\left(2n^2+3n+1\right)\)
\(\Rightarrow f\left(2n\right)-f\left(n\right)=8n^2+6n+1-2n^2-3n-1\)
\(\Rightarrow f\left(2n\right)-f\left(n\right)=\left(8n^2-2n^2\right)+\left(6n-3n\right)+\left(1-1\right)\)
\(\Rightarrow f\left(2n\right)-f\left(n\right)=6n^2+3n\)
\(\Rightarrow f\left(2n\right)-f\left(n\right)=3\cdot\left(2n^2+n\right)⋮3\)
Vậy,\(f\left(2n\right)-f\left(n\right)⋮3\)(đpcm)
Ta có :
\(f\left(2n\right)=2\left(2x^2+3x+1\right)=4x^2+6x+2\)
\(f\left(n\right)=2n^2+3n+1\)
Suy ra :
\(f\left(2n\right)-f\left(n\right)=\left(4n^2+6n+2\right)-\left(2n^2+3n+1\right)\)
\(f\left(2n\right)-f\left(n\right)=4n^2+6n+2-2n^2-3n-1\)
\(f\left(2n\right)-f\left(n\right)=\left(4n^2-2n^2\right)+\left(6n-3n\right)+\left(2-1\right)\)
\(f\left(2n\right)-f\left(n\right)=2n^2+3n+1\)
Phần chứng minh bạn tự làm
Chúc bạn học tốt ~
a: \(3x-\left|2x+1\right|=2\)
\(\Leftrightarrow\left|2x+1\right|=3x-2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(3x-2\right)^2-\left(2x+1\right)^2=0\\x>=\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(3x-2-2x-1\right)\left(3x-2+2x+1\right)=0\\x>=\dfrac{2}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-3\right)\left(5x-1\right)=0\\x>=\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow x=3\)
e: Ta có: \(2n-3⋮n+1\)
\(\Leftrightarrow2n+2-5⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{0;-2;4;-6\right\}\)