K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2017

a) Ta có : x - 4 chia hết cho x + 1

=> x + 1 - 5 chia hết cho x + 1

=> 5 chia hết cho x + 1

=> x + 1 thuộc Ư(5) = {-5;-1;1;5}

=> x = {-6;-2;0;4}

b) 3x - 1 chia hết cho x - 4

=> 3x - 12 + 11 chia hết cho x - 4

=> 3(x - 4) + 11 chia hết cho x - 4

=> 11 chia hết cho x - 4

=> x - 4 thuộc Ư(11) = {-11;-1;1;11}

=> x = {-7;3;5;15}

21 tháng 7 2017

a,x-4 chia hết cho x+1

\(\Rightarrow\)x-(1+3) chia hết cho x+1

Mà x+1 chia hết cho x+1 nên 3 chia hết cho x+1

\(\Rightarrow\)x thuộc Ư(3)={1;3}

\(\Rightarrow\)x thuộc {0;2}

Theo đề bài, ta có: \(3x-4⋮x-1\)

\(\Rightarrow3\left(x-1\right)-1⋮x-1\)

\(\Rightarrow-1⋮x-1\)

Vì \(x\in Z\Rightarrow x-1\inƯ\left(-1\right)=\left\{\mp1\right\}\)

Ta có các trường hợp sau:

\(\orbr{\begin{cases}x-1=1\\x-1=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}\)

Vậy \(x\in\left\{2;0\right\}\)

20 tháng 2 2020

3x - 4 \(⋮\) x - 1

\(\Rightarrow3\left(x-1\right)-1⋮x-1\)

\(\Rightarrow1⋮x-1\)

\(\Rightarrow x-1\inƯ\left(1\right)=\left\{-1;1\right\}\)

\(\Rightarrow x\in\left\{0;2\right\}\)

Vậy \(x\in\left\{0;2\right\}\)

@@ Học tốt

26 tháng 1 2017

3x+2\(⋮\)x-1

<=> 3x - 3 + 5 \(⋮\)x - 1

Vì 3x - 3 \(⋮\)x - 1 mà  3x - 3 + 5 \(⋮\)x - 1 nên:

=> 5 \(⋮\)x - 1

x - 1 \(\in\){ -5;-1;1;5}

=> x \(\in\){ -4;0;2;6}

Vậy x = { -4;0;2;6}

29 tháng 12 2016

các thiên tài đi đâu hết rùi, bài này tui đăng thử xem sao thui mà ko có ai giải đc

20 tháng 11 2014

a) x=-2

b) x=12; x=-2

c) x=12; x=-6

Lắm phần c,d , b quá

15 chia hết cho 2x+1 thì x= 1, x=4 và x=7 (nếu cả số âm nữa thì tự tìm nhé)

10 chia hết cho 3x+1 thì x=0, x=3 (nếu cả số âm nữa thì tự tìm nhé)

(7-x)-(25+7)=25 thì x=-36

6 chi hết cho x-1 thì x=2: x=3: x=4: x=7 (nếu cả số âm nữa thì tự tìm nhé)

5 chia hết cho x+1 thì x=0; x=4  (nếu cả số âm nữa thì tự tìm nhé)

e) x=0: x=1: x=3: x=9

f) x=1

g) x=0: x=2; x=4; x=14

z) x=0: x=1: x=4: x=9

 

14 tháng 8 2017

vai cut

13 tháng 1 2021

Giả sử 3x+5y3x+5y⋮ 77

⇒ 3x+5y−3(x+4y)3x+5y−3(x+4y)⋮ 77

⇔ −7y−7y⋮ 77

⇒ Luôn đúng

⇒ 3(x+4y)3(x+4y)⋮ 77

⇒ x+4yx+4y⋮ 77

⇒ (3x+5y)(x+4y)(3x+5y)(x+4y)⋮ 7.77.7

hay (3x+5y)(x+4y)(3x+5y)(x+4y)⋮ 4949

Giả sử x+4yx+4y⋮ 77

⇒ 3(x+4y)3(x+4y)⋮ 77

⇒ 3(x+4y)−3x−5y3(x+4y)−3x−5y⋮ 77

⇒ 7y7y⋮ 77

⇒  3x+5y3x+5y⋮ 77

⇒ (3x+5y)(x+4y)(3x+5y)(x+4y)⋮ 7.77.7

hay (3x+5y)(x+4y)(3x+5y)(x+4y)⋮ 49

13 tháng 1 2021
Giả sử 3x+5y3x+5ychia hết cho 77
14 tháng 8 2015

1. Ta tìm nghiệm x, y > 0. Ta tìm nghiệm y ≤ x, các nghiệm còn lại có được bằng cách hoán vị x và y 
3x + 1 ≥ 3y + 1 = kx, với k là số tự nhiên => k = 1, 2, 4 (3y + 1 không chia hết cho 3) 
Với k = 1 => 3y + 1 = x, 3x + 1 = 9y + 4 chia hết cho y <=> 4 chia hết cho y <=> y = 1 và x = 3y + 1 = 4, hoặc y = 2 và x = 3y + 1 = 7, hoặc y = 4 và x = 3y + 1 = 13. 
Với k = 2 => 3y + 1 = 2x, 3x + 1 = (9y + 5) / 2 = my (với m tự nhiên) 
=> (2m - 9)y = 5 => y là ước của 5 <=> y = 1 và x = (3y + 1) / 2 = 2, hoặc y = 5 và x = (3y + 1) / 2 = 8 
Với k = 4 => 3x + 1 ≥ 4x => 1 ≥ x ≥ 1 => x = 1 => 3x + 1 = 4 chia hết cho y <=> y = 1, 2 hoặc 4 
=> nghiệm (x, y) = (1, 1), (1, 2), (1, 4), (2, 1), (4, 1), (7, 2), (8, 5), (13, 4) và (hoán vị) (2, 7), (5, 8), (4, 13) 

2. Ta tìm 2 nghiệm x, y < 0. Đặt x1 = -x > 0, y1 = -y > 0. 
3x + 1 = -3x1 + 1 = - (3x1 - 1) chia hết cho y = -y1, tức (3x1 - 1) chia hết cho y1. Tương tự (3y1 - 1) chia hết cho x1. Ta tìm x ≤ y, tức y1 ≤ x1, các nghiệm còn lại có được bằng cách hoán vị x và y. 
3x1 - 1 ≥ 3y1 - 1 = kx1, với k là số tự nhiên => k = 1, 2 
Với k = 1=> x1 = 3y1 - 1, 3x1 - 1 = 9y1 - 4 chia hết cho y1 <=> 4 chia hết cho y1 <=> y1 = 1 và x1 = 2, hoặc y1 = 2 và x1 = 5, hoặc y1 = 4 và x1 = 11 
Với k = 2 => 3y1 - 1 = 2x1, 3x1 - 1 = (9y1 - 5) / 2 = my1 (với m tự nhiên) 
=> (9 - 2m)y1 = 5 => y1 là ước của 5 <=> y1 = 1 và x1 = (3y1 - 1) / 2 = 1, hoặc y1 = 5 và x1 = 7 
=> nghiệm (x, y) = (-11, -4), (-7, -5), (-5, -2), (-2, -1), (-1, -1) và (-1, -2), (-2, -5), (-4, -11), (-5, -7) 

3. Ta tìm nghiệm y < 0 < x, nghiệm x < 0 < y có được bằng cách hoán vị x và y. 
Ta đặt y1 = - y > 0. 
3x + 1 chia hết cho y = -y1, tức chia hết cho y1. 3y + 1 = -(3y1 - 1) chia hết cho x, tức (3y1 - 1) chia hết cho x. 
3a. y1 ≤ x 
3x + 1 ≥ 3y1 + 1 > 3y1 - 1 = kx => k = 1, 2 (3y1 - 1 không chia hết cho 3) 
Với k = 1 => x = 3y1 - 1 => 3x + 1 = 9y1 - 2 chia hết cho y1 <=> 2 chia hết cho y1 <=> y1 = 1 và x = 3y1 - 1 = 2 hoặc y1 = 2 và x = 5 
Với k = 2 => 3y1 - 1 = 2x => 3x + 1 = (9y1 - 1) / 2 = my1(m tự nhiên) 
(9 - 2m)y1 = 1 => y1 = 1 => x = (3y1 - 1) / 2 = 1 
=> nghiệm (x, y) = (1, -1), (2, -1), (5, -2) 

3b. x < y1 
ky1 = 3x + 1 < 3y1 + 1 => k = 1, 2 (3x + 1) không chia hết cho 3) 
Với k = 1 => y1 = 3x + 1 => 3y1 - 1 = 9x + 2 chia hết cho x <=> 2 chia hết cho x <=> x = 1 và y1 = 3x + 1 = 4, hoặc x = 2 và y1 = 7 
Với k = 2 => 2y1 = 3x + 1 => 3y1 - 1 = (9x + 1) / 2 = mx (m tự nhiên) 
=> (2m - 9)x = 1 => x = 1 => y1 = (3x + 1) / 2 = 2 
=> nghiệm (x, y) = (1, -2), (1, -4), (2, -7) 

Vậy nghiệm x, y khác dấu là: (x, y) = (1, -1), (2, -1), (5, -2), (1, -2), (1, -4), (2, -7) và (hoán vị) (-1, 1), (-1, 2), (-2, 5), (-2, 1), (-4, 1), (-7, 2) 
------------- 
Kết luận: tất cả các nghiệm: 
(x, y) = (-11, -4), (-7, -5), (-7, 2), (-5, -7), (-5, -2), (-4, -11), (-4, 1), (-2, -5), (-2, -1), (-2, 1), (-2, 5), (-1, -2), (-1, -1), (-1, 1), (-1, 2), (1, -4), (1, -2), (1, -1), (1, 1), (1, 2), (1, 4), (2, -7), (2, -1), (2, 1), (2, 7), (4, 1), (4, 13), (5, -2), (5, 8), (7, 2), (8, 5), (13, 4) 
----------- 

14 tháng 8 2015

mk bái phục bạn Tài Nguyễn Tuấn