Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử A chia hết cho 102
=>A chia hết cho 3(*)
Nhưng 220 chia 3 dư 1
=>\(220^{11969}\) chia 3 dư 1(1)
119 chia 3 dư 2
=>\(119^2\)chia 3 dư 1
=>\(\left(119^2\right)^{34610}\) chia 3 dư 1(2)
69 chia hết cho 3
=>69^220119 cũng chia hết cho 3(3)
Từ (1),(2)và (3)
=>A chia 3 dư 2
Mâu thuẫn với (*)
=>SAI ĐỀ bạn à
Nếu thấy bài làm của mình đúng thì tick nha bạn,cảm ơn nhiều.
\(1.\)Ta có: \(8.10^{2016}+2017=8.10...000+2017=80...000+2017=80...2017\)
Mà tổng các chữ số của số trên là: \(8+0+...+2+0+1+7=18\)chia hết cho 9
\(\Rightarrow\)\(8.10^{2016}+2017\)chia hết cho 9
Vậy \(\frac{8.10^{2016}+2017}{9}\)có giá trị là 1 số tự nhiên.
\(2.\)Ta có: 220 đồng dư với 0 (mod 2) nên \(220^{11969}\)đồng dư với 0 (mod 2)
119 đồng dư với 1 (mod 2) nên \(119^{69220}\)đồng dư với 1 (mod 2)
69 đồng dư với -1 (mod 2) nên \(69^{220119}\)đồng dư với -1 (mod 2)
Vậy A đồng dư với 0 (mod 2) suy ra A chia hết cho 2.
Mặt khác: 220 đồng dư với 1 (mod 3) nên \(220^{11969}\)đồng dư với 1 (mod 3)
119 đồng dư với -1 (mod 3) nên \(119^{69220}\)đồng dư với -1 (mod 3)
69 đồng dư với 0 (mod 3) nên \(69^{220119}\)đồng dư với 0 (mod 3)
Vậy A đồng dư với 0 (mod 3) suy ra A chia hết cho 3.
Ta lại có: 220 đồng dư với -1 (mod 17) nên \(220^{11969}\)đồng dư với -1 (mod 17)
119 đồng dư với 0 (mod 17) nên \(119^{69220}\)đồng dư với 0 (mod 17)
69 đồng dư với 1 (mod 17) nên \(69^{220119}\)đồng dư với 1 (mod 17)
Vậy A đồng dư với 0 (mod 17) suy ra A chia hết cho 17.
Vì 2, 3, 17 là các số nguyên tố \(\Rightarrow\)A chia hết cho 102 (vì 2.3.17 = 102).
Giải:
\(102=2.3.17\)
Ta có:
\(220\equiv0\left(mod2\right)\) nên \(220^{11969}\equiv0\left(mod2\right)\)
\(119\equiv1\left(mod2\right)\) nên \(119^{69220}\equiv1\left(mod2\right)\)
\(69\equiv-1\left(mod2\right)\) nên \(69^{220119}\equiv-1\left(mod2\right)\)
\(\Rightarrow A\equiv0\left(mod2\right)\) Hay \(A⋮2\)
Tương tự ta cũng có: \(\left\{{}\begin{matrix}A⋮3\\A⋮17\end{matrix}\right.\)
Mà \(\left(2;3;17\right)=1\Rightarrow A⋮2.3.17=102\)
Vậy \(A=220^{11969}+119^{69220}+69^{220119}⋮102\) (Đpcm)
Có : 22011969 đồng dư 111969 =1 modun 3
11969220 đồng dư 269220=1617305 đồng dư 117305 modun 3.
69220119 chia hết cho 3
=> Tổng ba số ko chia hết cho 3
mà 102 chia hết cho 3.
102
Toán lớp 7Lũy thừaChia hết và chia có dư
Trần Thị Loan Quản lý 15/08/2015 lúc 22:15
102 = 2.3.17
+) Chứng minh A chia hết cho 2
$220^{119^{69}}=\left(....0\right)$22011969=(....0)
$69^{220}$69220 lẻ => $119^{69^{220}}=\left(....9\right)$11969220=(....9)
220119 tận cùng là 0 => kết qỉa là số chẵn => $69^{220^{119}}=\left(....1\right)$69220119=(....1)
=> A có tận cùng là chữ số 0 => A chia hết cho 2 (1)
+) A chia hết cho 3
220 đồng dư với 1 (mod 3) => $220^{119^{69}}$22011969 đồng dư với 1 mod 3
119 đồng dư với -1 mod 3 => $119^{69^{220}}$11969220 đồng dư với $\left(-1\right)^{69^{220}}=-1$(−1)69220=−1 (mod 3)
69 chia hết cho 3 nên $69^{220^{119}}$69220119 chia hết cho 3 hay $69^{220^{119}}$69220119 đồng dư với 0 (mod 3)
=> A đồng dư với 1 +(-1) + 0 = 0 (mod 3) =>A chia hết cho 3 (2)
+) A chia hết cho 17
220 đồng dư với (-1) mod 3 => $220^{119^{69}}$22011969 đồng dư với $\left(-1\right)^{119^{69}}=-1$
Bài này khá dễ, bạn hãy theo dõi bài giải của mình nhé! ^^
Ta có :
220 đồng dư với 118 (mod 102) => 220^11969 đồng dư với 118 (mod 102)
119 đồng dư với 17 (mod 102) => 119^69220 đồng dư với 17 (mod 102)
69 đồng dư với 69 (mod 102) => 69^220119 đồng dư với 69 (mod 102)
=> 220^11969 + 119^69220 + 69^220119 đồng dư với (118 + 17 + 69) (mod 102)
=> 220^11069 + 119^69220 + 69^220119 chia hết cho 102
ko khó đâu bn - chỉ cần giả 1 cách đơn giản như sau :
220 = 0 ( mod2) \(\Rightarrow220^{11969}=0\)(mod2)
119 = 1 ( mod2) \(\Rightarrow119^{69220}=1\) ( mod2)
69 = -1 *(mod2) \(\Rightarrow69^{220119}=-1\)(mod2)
\(\Rightarrow A=0\)(mod2) hay A \(⋮\)2
Tương tự ta thấy : A \(⋮\)3 và A\(⋮\)17
Vì 2 .3 . 17 = 102
\(\Rightarrow\) A \(⋮\) 102 ( đpcm,)