Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(=\dfrac{5}{4}\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{4n-1}-\dfrac{1}{4n+3}\right)\)
\(=\dfrac{5}{4}\left(\dfrac{1}{3}-\dfrac{1}{4n+3}\right)\)
\(=\dfrac{5}{4}\cdot\dfrac{4n+3-3}{3\left(4n+3\right)}=\dfrac{5}{4}\cdot\dfrac{4n}{3\left(4n+3\right)}=\dfrac{5n}{3\left(4n+3\right)}\)
Câu 2:
\(=\dfrac{3}{5}\left(\dfrac{1}{9}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{19}+...+\dfrac{1}{5n-1}-\dfrac{1}{5n+4}\right)\)
\(=\dfrac{3}{5}\left(\dfrac{1}{9}-\dfrac{1}{5n+4}\right)\)
\(=\dfrac{3}{5}\cdot\dfrac{5n+4-9}{9\left(5n+4\right)}=\dfrac{3}{5}\cdot\dfrac{5\left(n-1\right)}{9\left(5n+4\right)}=\dfrac{n-1}{3\left(5n+4\right)}< \dfrac{1}{15}\)
a/ \(\frac{1}{n\left(n-1\right)\left(n+1\right)}=\frac{1}{n^3-n}>\frac{1}{n^3}\)
b/ \(\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n^3+3n^2+2n}< \frac{1}{n^3}\)
c/ Ap dụng câu b ta được
\(\frac{1}{2^3}+\frac{1}{3^3}+...+\frac{1}{2006^3}>\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2006.2007.2008}\)
\(=\frac{1}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2006.2007}-\frac{1}{2007.2008}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2.3}-\frac{1}{2007.2008}\right)>\frac{1}{12}>\frac{1}{15}\)
Ta có : 1/(n-1).n.(n+1) = 1/n.[(n-1).(n+1)] = 1/n.(n^2-1)
Vì n là số nguyên > 1 => n > 0 ; n^2-1 > 0 và n^2-1 < n^2
=> 1/n^2 < 1/n^2-1
=> 1/n.n^2 < 1/n.(n^2+1)
=> 1/n^3 < 1/n.(n-1).(n+1)
=> ĐPCM
Tk mk nha