Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét n tích \(x_1x_2,x_2x_3,...,x_nx_1\), mỗi tích có giá trị bằng 1 hoặc -1 mà tổng của chúng bằng 0 nên số tích có giá trị 1 bằng số tích có giá trị -1, và đều bằng \(\frac{n}{2}\). Vậy n chia hết cho 2.
Bây giờ ta sẽ chứng minh rằng số tích có giá trị -1 cũng là số chẵn. Thật vậy, xét
\(A=\left(x_1x_2\right)\left(x_2x_3\right)...\left(x_{n-1}x_n\right)\left(x_nx_1\right).\)
Ta thấy \(A=x_1^2x_2^2...x_n^2\) nên \(A=1>0\) chứng tỏ số tích có giá trị -1 cũng là số chẵn, tức là \(\frac{n}{2}\) là số chẵn, do đó n chia hết cho 4.
Câu hỏi của Thi Bùi - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo link trên nhé!
Vì n số x1,x2,x3,... ,xn mỗi số bằng 1 hoặc -1.
=> n tích x1x2; x2x3; x3x4; ...;xnx1 mỗi tích bằng 1 hoặc -1
Mà tổng n h trên bằng 0
=> số tích=1 sẽ bằng số tích= -1 (=n:2)
=> n chia hết cho 2
Ta thấy: (x1x2) (x2x3) (x3x4) ...(xnx1) = (x1)2. (x2)2 .(x3)2... (xn)2 =1 >0
=> số tích bằng -1 phải là số chẵn
=> n:2 là số chẵn => nchia hết cho 4
Bài 1 :
Ta có :
\(\left(x-1\right)^6=\left(x-1\right)^8\)
\(\Leftrightarrow\)\(x-1=\left(x-1\right)^2\)
\(\Leftrightarrow\)\(\left(x-1\right)-\left(x-1\right)^2=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(1-x+1\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(2-x\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\2-x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}}\)
Vậy \(x=1\) hoặc \(x=2\)