Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2x^2-8x+1\)
\(A=2\left(x^2-4x+\frac{1}{2}\right)\)
\(A=2\left[x^2-2.2x+4-4+\frac{1}{2}\right]\)
\(A=2\left[\left(x-2\right)^2-\frac{7}{2}\right]\)
\(A=2\left(x-2\right)^2-7\ge7\forall x\)
dấu " = " xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
vậy MIN A = 7 khi \(x=2\)
\(B=-5x^2-4x+1\)
\(B=-5\left(x^2+\frac{4}{5}x-\frac{1}{5}\right)\)
\(B=-5\left(x^2+2.\frac{2}{5}x+\frac{4}{25}-\frac{4}{25}-\frac{1}{5}\right)\)
\(B=-5\left[\left(x+\frac{2}{5}\right)^2-\frac{9}{25}\right]\)
\(B=-5\left(x+\frac{2}{5}\right)^2+\frac{9}{5}\le\frac{9}{5}\forall x\)
dấu \("="\) xảy ra khi \(x+\frac{2}{5}=0\Leftrightarrow x=\frac{-2}{5}\)
vậy MIn B = \(\frac{9}{5}\) khi \(x=\frac{-2}{5}\)
còn lại làm tương tự nhé
Ta có :
\(A=2x^2-8x+1\)
\(A=\left(x^2-4x+4\right)+\left(x^2-4x+4\right)-7\)
\(A=2\left(x^2-4x+4\right)-7\)
\(A=2\left(x-2\right)^2-7\ge-7\)
Dấu "=" xảy ra khi và chỉ khi \(2\left(x-2\right)^2=0\)
\(\Leftrightarrow\)\(\left(x-2\right)^2=0\)
\(\Leftrightarrow\)\(x-2=0\)
\(\Leftrightarrow\)\(x=2\)
Vậy GTNN của \(A\) là \(-7\) khi \(x=2\)
Chúc bạn học tốt ~
Bạn xem lại câu b có thiếu gì ko nhé!!!
a) Xét \(a^2+b^2-2ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(ĐPCM)
c) Xét \(a^2+b^2+2-2\left(a+b\right)=\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\)
\(=\left(a-1\right)^2+\left(b-1\right)^2\ge0\)
\(\Rightarrow a^2+b^2+2-2\left(a+b\right)\ge0\)
\(\Rightarrow a^2+b^2+2\ge2\left(a+b\right)\)(ĐPCM)
Lời giải:
$(8x-1)(x+7)-(x-2)(8x+5)-11(6x+1)$
$=8x^2+55x-7-(8x^2-11x-10)-(66x-11)$
$=8x^2+55x-7-8x^2+11x+10-66x+11$
$=(8x^2-8x^2)+(55x+11x-66x)+(-7+10+11)=14$ không phụ thuộc vào giá trị của biến $x$ (đpcm)
Gọi 3 số lần lượt là : (x - 1) ; x ; (x + 1)
Có :
(x - 1)3 + x3 + (x + 1)3
= (x3 - 3.x2.1 + 3.x.12 - 1) + x3 + (x3 + 3.x2.1 + 3x.12 + 1)
= x3 - 3.x2.1 + 3.x.12 - 1 + x3 + x3 + 3.x2.1 + 3x.12 + 1
= 3x3 + 6x
= 3x3 - 3x + 9x
= 3x(x2 - 1) + 9x
= 3x.(x - 1)(x + 1) + 9x
Xét (x - 1).x.(x + 1) là tích 3 số nguyên liên tiếp
=> (x - 1).x.(x + 1) \(⋮\) 3
=> 3.(x - 1).x.(x + 1) \(⋮\) 9
Mà 9x \(⋮\) 9
=> (x - 1)3 + x3 + (x + 1)3 \(⋮\) 9
Hình bạn tự vẽ nha!
a) Xét \(\Delta ABC\) có:
\(E\) là trung điểm của \(AB\left(gt\right)\)
\(F\) là trung điểm của \(AC\left(gt\right)\)
=> \(EF\) là đường trung bình của \(\Delta ABC.\)
=> \(EF=\frac{1}{2}BC\) (định lí đường trung bình của tam giác)
Thay số vào ta được:
\(5=\frac{1}{2}BC\)
\(\Rightarrow BC=5:\frac{1}{2}\)
\(\Rightarrow BC=10cm.\)
Còn câu b) thì mình đang nghĩ nhé.
Chúc bạn học tốt!
a) Xét 2 tam giác vuông \(HBA\) và \(ABC\) có:
\(\widehat{BHA}=\widehat{BAC}=90^0\left(gt\right)\)
\(\widehat{B}\) chung
=> \(\Delta HBA\sim\Delta ABC\left(g-g\right).\)
b):
b1) Xét 2 tam giác vuông \(MHA\) và \(HBA\) có:
\(\widehat{AMH}=\widehat{AHB}=90^0\left(gt\right)\)
\(\widehat{MAH}\) chung
=> \(\Delta MHA\sim\Delta HBA\left(g-g\right).\)
b2) Sửa lại đề: Chứng minh \(AM.AB=AN.AC\)
+ Theo câu b1) ta có \(\Delta MHA\sim\Delta HBA.\)
=> \(\frac{AM}{AH}=\frac{AH}{AB}\) (cặp cạnh tương ứng).
=> \(AM.AB=AH.AH\)
=> \(AM.AB=AH^2\) (1).
+ Xét 2 tam giác vuông \(AHN\) và \(ACH\) có:
\(\widehat{ANH}=\widehat{AHC}=90^0\left(gt\right)\)
\(\widehat{HAN}\) chung
=> \(\Delta AHN\sim\Delta ACH\left(g-g\right).\)
=> \(\frac{AN}{AH}=\frac{AH}{AC}\) (cặp cạnh tương ứng).
=> \(AN.AC=AH.AH\)
=> \(AN.AC=AH^2\) (2).
Từ (1) và (2) => \(AM.AB=AN.AC\left(đpcm\right).\)
Chúc bạn học tốt!
a) Xét ΔHBA và ΔABC có
\(\widehat{AHB}=\widehat{CAB}\left(=90^0\right)\)
\(\widehat{ABC}\) chung
Do đó: ΔHBA∼ΔABC(g-g)
Bài 1:
a: \(=-10x^3+20x^4-5x\)
b: \(=\dfrac{1}{3}a^2b+7a^5-1\)
c: \(=a^3+8+25-a^3=33\)
d: \(=x^2-16+8-x^3=-x^3+x^2-8\)
e: \(=a^3+1+8-a^3=9\)
f: \(=\dfrac{7-2x+4x-8}{2x+3}=\dfrac{2x-1}{2x+3}\)
g: \(=\dfrac{3}{2\left(x+3\right)}-\dfrac{2}{x\left(x+3\right)}\)
\(=\dfrac{3x-4}{2x\left(x+3\right)}\)
\(9a^2+b^2-6a+2b+5\)
\(=\left[\left(3a\right)^2-2.3.a+1\right]+\left(b^2+2b+1\right)+3\)
\(=\left(3a-1\right)^2+\left(b+1\right)^2+3\)
Ta thấy: \(\left(3a-1\right)^2\ge0;\left(b+1\right)^2\ge0\)\(\forall a;b\)
\(\Rightarrow\left(3a-1\right)^2+\left(b+1\right)^2+3>0\forall a;b\)
\(\Rightarrow9a^2+b^2-6a+2b+5>0\forall a;b\)