Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
E;F lần lượt là tủng điểm của AB; AC (gt)
=> EF là đường trung bình của tam giác ABC (đn)
=> EF = 1/2BC (đl)
=> BC = EF.2
mà EF = 5 cm (gT)
=> BC = 5.2 = 10 (cm)
b, có E là trung điểm của AB (gt) => AE = 1/2AB (đn) (1)
=> HE là trung tuyến của tam giác vuông AHB (đn)
=> HE = 1/2 AB (đl) (2)
(1)(2) => AE = HE
=> E thuộc đường trung trực của AH (Đl) (3)
làm tương tự với F trong tam giác AHC
=> F thuộc đường trung trực của AH (Đl) (4)
(3)(4) => EF là đường trung trực của AH (đl)
a: Ta có: ΔAHB vuông tại H
mà HE là đường trung tuyến ứng với cạnh huyền AB
nên HE=AE
hay E nằm trên đường trung trực của AH(1)
Ta có: ΔAHC vuông tại H
mà HF là đường trung tuyến ứng với cạnh huyền AC
nên HF=FA
hay F nằm trên đường trung trực của AH(2)
Từ (1) và (2) suy ra FE là đường trung trực của AH
hay FE\(\perp\)AH
Hình bạn tự vẽ nha!
a) Xét \(\Delta ABC\) có:
\(E\) là trung điểm của \(AB\left(gt\right)\)
\(F\) là trung điểm của \(AC\left(gt\right)\)
=> \(EF\) là đường trung bình của \(\Delta ABC.\)
=> \(EF=\frac{1}{2}BC\) (định lí đường trung bình của tam giác)
Thay số vào ta được:
\(5=\frac{1}{2}BC\)
\(\Rightarrow BC=5:\frac{1}{2}\)
\(\Rightarrow BC=10cm.\)
Còn câu b) thì mình đang nghĩ nhé.
Chúc bạn học tốt!