K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2016

chia hết cho 8,hay bội số cua 8. 
Đặt n=2k+1 với k thuộc Z 
A=(2k+1)^2+4(2k+1)+5=4k^2+12k+10= 
(2k+3)^2+1 
ta biết 1 số bình phương chia cho 8 thì dư 1 hoặc 3(bạn nên chứng minh thêm bài toán phụ này) 
khi đó A chia 8 sẽ dư 2 hoăc 4,suy ra đpcm

21 tháng 11 2015

Hôm nay thứ 7 rồi

Dê !!!? - Khỏi làm ???!

2 tháng 7 2017

B1 a, Có n lẻ nên n = 2k+1(k E N)

Khi đó: n^2 + 7 = (2k+1)^2 +7 

= 4k^2 + 4k + 8

= 4k(k+1) +8 

Ta thấy k và k+1 là 2 số tự nhiên liên tiếp nên có ít nhất 1 số chia hết cho 2

=> k(k+1) chia hết cho 2 <=> 4k(k+1) chia hết cho 8

Mà 8 chia hết cho 8 <=> n^2 + 7 chia hết cho 8

2 tháng 9 2015

1, n có dạng 2k+1(n\(\in N\)) Ta có: 

  \(n^2+4n+3=\left(2k+1\right)^2+4\left(2k+1\right)+3\) 

                                 \(=4k^2+4k+1+8k+4+3\) 

                                 \(=4k^2+12k+8\) 

                                 \(=4\left(k^2+3k+2\right)\) 

                                \(=4\left(k+1\right)\left(k+2\right)\) 

vì (k+1)(k+2) là tích 2 số tự nhiên liên tiếp \(\Rightarrow\left(k+1\right)\left(k+2\right)\) chia hết cho 2  

 mà 4(k+1)(k+2)chia hết cho 4 

\(\Rightarrow n^2+4n+3\) chia hết cho 8 với mọi n  là số lẻ. 

2, ta có:  

        \(a^3+b^3+c^3=\left(a+b+c\right)\left(ab-bc-ac\right)+3abc\) 

 \(\Rightarrow a^3+b^3+c^3=3abc\) (vì a+b+c=0)

a+b+c=0

=>(a+b+c)3=0

=>a3+b3+c3+3a2b+3ab2+3b2c+3bc2+3a2c+3ac2+6abc=0

=>a3+b3+c3+(3a2b+3ab2+3abc)+(3b2c+3bc2+3abc)+(3a2c+3ac2+3abc)-3abc=0

=>a3+b3+c3+3ab(a+b+c)+3bc(a+b+c)+3ac(a+b+c)=3abc

Do a+b+c=0

=>a3+b3+c3=3abc(ĐPCM)

18 tháng 12 2016

bt trên sẽ là  (a4n)+ 3 . a4n  - 4 = (a4n)2 + 4. a4n - a4n -4 = ( a4n + 4)(a4n -1)

mặt khác vì a là số tự nhiên , a không chia hết cho 5

=> a4n = (a2n) là số chính phương chia 5 dư 1 hoặc 4 (vì scp chia 5 dư 0,1,4 - bạn có thể chứng minh = cách xét 1 số x nào đó có số dư cho 5 là 0,1,2,3,4 , đăt dạng của nó (VD như 5k+1 chẳng hạn ) rồi bp lên đc scp của nó để tìm số dư của scp đó cho 5 theo cách tổng quát nhất)

 nếu a4n chia 5 dư 1 => a4n -1 chia hết cho 5 => bt chia hết cho 5

nếu a4n chia 5 dư 4 => a4n -4 chia hết cho 5 => bt chia hết cho 5

 Vậy bt trên chia hết cho 5

10 tháng 12 2015

Vì n là số lẽ nên ta có : \(n=2k+1\left(k\in N\right)\). Thay vào :

\(\left(2k+1\right)^2-1=4k^2+4k+1-1=4k^2+4k=4k\left(k+1\right)\)

4 chia hết cho 4 ; \(k\left(k+1\right)\)là 2 số tự nhiên liên tiếp nên chia hết cho 2 \(\Rightarrow\left(2k+1\right)^2-1\) chia hết cho 8 (vì 4.2=8).

Vậy với mọi số tự nhiên n, nếu n là số lẽ thì \(n^2-1\) chia hết cho 8.

 

 

NV
16 tháng 8 2020

Do n lẻ, đặt \(n=2k+1\) với k tự nhiên

\(A=\left(2k+1\right)^2+12\left(2k+1\right)+27=4k^2+28k+40\)

\(=4k\left(k+7\right)+40\)

Do \(k\)\(k+7\) luôn khác tính chẵn lẻ \(\Rightarrow k\left(k+7\right)⋮2\)

\(\Rightarrow4k\left(k+7\right)⋮8\Rightarrow A⋮8\) với mọi n lẻ

1 tháng 6 2023

Phân tích: m12-m8-m4+1=(m2+1)2(m4+1)(m2-1)2

5 tháng 12 2021

Ta có 52n+7 = 25n+7

Lại có 25:8 dư 1 => 25n:8 dư 1n

Mà 1n = 1 => 25n chia 8 dư 1

=> 25n+7 chia 8 dư 1+7 hay dư 8

Mà 8⋮8 => đpcm

21 tháng 10 2019

n2+n+2 = n(n+1)+2

n sẽ có dạng n=3k; n=3k+1; n=3k+2 (k\(\in Z\))

 n=3k => n(n+1) = 3k(3k+1) chia hết cho 3 nên 3k(3k+1)+2 không chia hết cho 3

n=3k +1 => n2+n+2= (3k+1)2 +3k+3; dế thấy 3k+3 chia hết cho 3 nhưng (3k+1)2 không chia hết cho 3 nên n2 +n+2 không chia hết cho 3

n=3k+2 => n(n+1) = (3k+1)(3k+3)=3(3k+1)(k+1) chia hết cho 3 nên (3k+2)(k+3)+2 không chia hết cho 3

vậy với mọi n đều không chia hết