Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có n^5 - n = n (n^4 - 1) = n(n^2 - 1)(n^2 + 1) = n(n + 1)(n - 1)(n^2 + 1) = n(n + 1)(n - 1)(n^2 + 5 - 4) = n(n + 1)(n - 1)( 5 + n^2 - 4 ) = 5n(n + 1)(n - 1) + n(n + 1)(n - 1)(n^2 - 4) = 5n(n + 1)(n - 1) + n(n - 1)(n + 1)(n - 2)(n + 2).Do n( n - 1) chia hết cho 2 (là tích của 2 số tự nhiện liên tiếp) nên 5n(n + 1)(n - 1) chia hết cho 10 (=5 nhân 2) (1). Ta có n(n - 1)(n + 1)(n - 2)(n + 2) là tích của 5 số tự nhiên liên tiếp nên nó chia hết cho 2 và 5 mà 2 và 5 nguyên tố cùng nhau nên n(n - 1)(n + 1)(n - 2)(n + 2) chia hết cho 10 (=2 nhân 5) (2). Từ (1) và (2) => điều phải chứng minh
\(n^3-n=n\left(n^2-1\right)\)
\(=n\left(n-1\right)\left(n+1\right)=\left(n-1\right).n.\left(n+1\right)\)
Ta thấy n-1;n;n+1 là ba số tự nhiên liên tiếp
Mà tích của ba số tự nhiên liên tiếp luôn chia hết cho 6
Nên \(n^3-n\) luôn chia hết cho 6.
Tham khảo, chúc bạn học thật giỏi!
\(n^3-n\)
\(=n\left(n^2-1\right)\)
\(=n\left(n+1\right)\left(n-1\right)\)
\(=\left(n-1\right)n\left(n+1\right)\)
Dễ thấy: \(n-1;n;n+1\) là 3 số tự nhiên liên tiếp thì chia hết cho 6
Ta có đpcm
đề sai : đề thật nè Chứng minh rằng m^3+20m chia hết cho 48
m = 2k thì
(2k)^3 + 20*2k = 8k^3 + 40k = 8k(k^2 + 5)
Cần chứng minh k(k^2 + 5) chia hết cho 6 là xong.
+ nếu k chẵn => k(k^2 + 5) chia hết cho 2
+ nếu k lẻ => k^2 lẻ => k^2 + 5 chẵn => k(k^2 + 5) chia hết cho 2
Vậy k(k^2 + 5) chia hết cho 2
+ nếu k chia hết cho 3 => k(k^2 + 5) chia hết cho 3
+ nếu k chia 3 dư 1 => k^2 + 5 = (3l + 1)^2 + 5 = 9l^2 + 6l + 6 chia hết cho 3
+ nếu k chia 3 dư 2 => k^2 + 5 = (3l + 2)^2 + 5 = 9l^2 + 12l + 9 chia hết cho 3
Vậy k(k^2 + 5) chia hết cho 3
=>dpcm
tk nha bạn
thank you bạn
(^_^)
cmr bieu thuc sau luon luon co gia tri duong voi moi gia tri cua bien: 3x^2 -5x+3
chung minh rang bieu thuc 4x(x+y)(x+y+z)(x+y) y^2x^2 luon luon khong am voi moi gia tri cua x,y va z
Đặt \(A=4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2\)
\(=4\left(x+y\right)\left(x+z\right)x\left(x+y+z\right)+y^2z^2=4\left(x^2+xz+xy+yz\right)\left(x^2+xy+xz\right)+y^2z^2\)
Đặt x2+xy+xz=t, ta có:
\(A=4\left(t+yz\right)t+y^2z^2=4t^2+4tyz+y^2z^2=\left(2t+yz\right)^2=\left(2x^2+2xy+2xz+yz\right)^2\ge0\)
chung minh rang bieu thuc 4x(x+y)(x+y+z)(x+y) y^2x^2 luon luon khong am voi moi gia tri cua x,y va z
ta có : \(4x\left(x+y\right)\left(x+y+z\right)\left(x+y\right)y^2x^2=4x\left(x+y+z\right)\left(x+y\right)^2y^2x^2\)
không thể khẳng định đc \(\Rightarrow\) bn xem lại đề .
ta có : n(n+5)−(n−3)(n+2)=n^2+5n−(n^2+2n−3n−6)
=n^2+5n−n^2−2n+3n+6=6n+6=6(n+1)⋮6
⇔6(n+1)⇔6(n+1) chia hết cho 6 với mọi n là số nguyên
⇔n(n+5)−(n−3)(n+2) chia hết cho 6 với mọi n là số nguyên
vậy n(n+5)−(n−3)(n+2)chia hết cho 6 với mọi n là số nguyên (đpcm)
Ta cm : n^5-n có chữ số tận cùng = 0
Ta có : \(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\\ n⋮2\Rightarrow A⋮2\\ nko⋮2\Rightarrow n^2-1;n^2+1⋮2\Rightarrow A⋮2\)
\(n⋮3\Rightarrow A⋮3\\ nko⋮3\\ \Rightarrow n^2chia3duw1\\ \Rightarrow n^2-1⋮3\\ \Rightarrow A⋮3\)
\(n⋮5\Rightarrow A⋮5\\ nko⋮5\Rightarrow n^2chia5du1;4\\ n^2:5du1\\ \Rightarrow n^2-1⋮5\\ \Rightarrow A⋮5\\ n^2:5du4\\ \Rightarrow n^2+1⋮5\\ \Rightarrow A⋮5\)
(2;3;5) ntoCN từng đôi => n^5-n chia hết cho 30
=> n^5-n có t/c = 0
=> đpcm
bạn ơi viết rõ ra khó hỉu wwwa