Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử đa diện (H) có các đỉnh là , gọi lần lượt là số các mặt của (H) nhận chúng là đỉnh chung. Như vậy mỗi đỉnh có cạnh đi qua. Do mỗi cạnh của (H) là cạnh chưn của đúng hai mặt nên tổng số các cạnh của H bằng
Vì c là số nguyên, là những số lẻ nên Đ phải là số chẵn. Ví dụ : Số đỉnh của hình chóp ngũ giác bằng sáu.
Đáp án D.
Đặt z = a + b i a ; b ∈ ℝ
Theo đề bài ta có
1 z = z ¯ ⇔ 1 a + b i = a − b i ⇔ a + b i a − b i = 1 ⇔ a 2 + b 2 = 1
⇒ z = 1
Đáp án C
Em có: S = 1. q n − 1 q − 1 = q n − 1 q − 1 .
Vì cấp số nhân mới tạo thành bằng cách thay đổi mỗi số hạng của cấp số nhân ban đầu thành nghịch đảo của nó nên cấp số nhân mới sẽ có công bội là 1 q .
Gọi S' là tổng mới của cấp số nhân mới.
Em có: S ' = 1 q n − 1 1 q − 1 = 1 − q n q n . 1 − q q = 1 − q n 1 − q . 1 q n − 1 = S q n − 1 .
Vậy tổng của cấp số nhân mới là: S q n − 1 .
a: Gọi mẫu là x
Theo đề, ta có:
\(\dfrac{2}{5}< \dfrac{4}{x}< \dfrac{2}{3}\)
=>10>x>6
=>\(x\in\left\{9;8;7\right\}\)
b: Phần phân số là 1-9/25=16/25
Phần nguyên là 125x9/25=45
Vậy: Hỗn số cần tìm là \(45\dfrac{16}{25}\)
Gọi số cần tìm là \(\overline{ab}\), số đó viết theo thứ tự ngược lại là \(\overline{ba}\). Theo bài ra ta có:
\(\overline{ab}\) = 4(a + b)
\(\Rightarrow\) 10a + b = 4a + 4b
\(\Rightarrow\) 6a = 3b
\(\Rightarrow\) 2a = b
Vì 10 > b > 0 và b \(⋮\) 2 nên b = 2, 4, 6, 8
+ Nếu b = 2 thì a = 1, 21 - 12 \(\ne\) 36(loại)
+ Nếu b = 4 thì a = 2, 42 - 24 \(\ne\) 36(loại)
+ Nếu b = 6 thì a = 3, 63 - 36 \(\ne\) 36(loại)
+ Nếu b = 8 thì a = 4, 84 - 48 = 36(chọn)
Vậy số cần tìm là 48
Vì có 11 tổng mà chỉ có thể có 10 chữ số tận cùng đều là các số từ 0 , 1 ,2, …., 9 nên luôn tìm được hai tổng có chữ số tận cùng giống nhau nên hiệu của chúng là một số nguyên có tận cùng là 0 và là số chia hết cho 10.
Gọi phân số đó là a/b (ĐK: a,b # 0, a và b cùng dấu )
a/b + b/a ≥ 2 <=> (a² + b ²)/ab ≥ 2
<=> a² - 2ab + b² ≥ 0
<=> ( a – b )² ≥ 0 ( Luôn đúng với mọi a, b)
=> Đpcm
mk giải đc nè, tick mk nha!!
Gọi phân số dương là a/b. Ko mất tính tổng quát, giả sử như: a>0, b>0 và a > b. Ta có thể viết a=b+m ( m > 0). Ta có:
a/b+b/a=b+m/b+b/m+b=1+m/b+b/b+m > 1+ m/b+m+b/b+m=1+m+b/b+m=2.
Vậy a/b+b/a > 2.