Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
phân tích vế trái ta được
2(x2+y2+z2−(xy+yz+zx))
phân tích vế phải ta được
6(x2+y2+z2−(xy+yz+zx))
vì VT=VP nên VP-VT=0
→ 4(x2+y2+z2−(xy+yz+zx))=0
→ 2(2(x2+y2+z2−(xy+yz+zx)))=0→2((x−y)2+(y−z)2+(z−x)2)=0→(x−y)2+(y−z)2+(z−x)2=0
→(x−y)2=0;(y−z)2=0;(z−x)2=0→x=y=z
Ta có:
\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=\left(y+z-2x\right)^2+\left(z+x-2y\right)^2+\left(x+y-2z\right)^2\)
\(\Rightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=6x^2+6y^2+6z^2-6xy-6yz-6zx\)
\(\Rightarrow4x^2+4y^2+4z^2-4xy-4yz-4zx=0\)
\(\Rightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)
\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{cases}}\Rightarrow x=y=z\)
:D