Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1:n=3 => 3n+2=11 là snt
TH2:n>3
+)n=3k+1(k\(\in\)N) => 3n+2=3(3k+1)+2=9k+5 là snt
+)n=3k+2(k\(\in\)N) => 3n+2=3(3k+2)+2=9k+8 là snt
Qua các trường hợp trên ta luôn có đpcm
xét n=4k, 4k+1, 4k+2, 4k+3
lưu ý : số chính phương chia 4 dư 0 hoặc 1
a) Định lí đảo ”Nếu n là số nguyên dương sao cho 5n + 6 là số lẻ thì n là số lẻ". Phát biểu gộp cả định lí thuận và định lí đảo là “Với mọi số nguyên dương n, 5n + 6 là số lẻ khi và chỉ khi n là số lẻ”.
b) Định lí đảo “Nếu n là số nguyên dương sao cho 7n + 4 là số chẵn thì n là số chẵn”. Phát biểu gộp cả hai định lí thuận và đảo là: “với mọi số nguyên dương n, 7n + 4 là số chẵn khi và chỉ khi n là số chẵn”.
a) Định lí đảo ”Nếu n là số nguyên dương sao cho 5n + 6 là số lẻ thì n là số lẻ". Phát biểu gộp cả định lí thuận và định lí đảo là “Với mọi số nguyên dương n, 5n + 6 là số lẻ khi và chỉ khi n là số lẻ”
b) Định lí đảo “Nếu n là số nguyên dương sao cho 7n + 4 là số chẵn thì n là số chẵn”. Phát biểu gộp cả hai định lí thuận và đảo là: “với mọi số nguyên dương n, 7n + 4 là số chẵn khi và chỉ khi n là số chẵn”.
Để chứng minh rằng m và n là hai số lẻ và nguyên tố cùng nhau, ta cần thực hiện các bước sau đây:
Bước 1: Giả sử rằng m và n là hai số tự nhiên thỏa mãn m^2 - 2020n^2 + 2022 chia hết cho mn.
Bước 2: Ta sẽ chứng minh rằng m và n là hai số lẻ.
Giả sử rằng m là số chẵn, tức là m = 2k với k là một số tự nhiên. Thay thế vào biểu thức ban đầu, ta có:
(2k)^2 - 2020n^2 + 2022 chia hết cho 2kn
Simplifying the equation, we get:
4k^2 - 2020n^2 + 2022 chia hết cho 2kn
Dividing both sides by 2, we have:
2k^2 - 1010n^2 + 1011 chia hết cho kn
Do 2k^2 chia hết cho kn, vì vậy 2k^2 cũng chia hết cho kn. Từ đó, 1011 chia hết cho kn.
Bởi vì 1011 là một số lẻ, để 1011 chia hết cho kn, thì kn cũng phải là một số lẻ. Vì vậy, n cũng phải là số lẻ.
Do đó, giả sử m là số chẵn là không hợp lệ. Vậy m phải là số lẻ.
Bước 3: Chứng minh rằng m và n là hai số nguyên tố cùng nhau.
Giả sử rằng m và n không phải là hai số nguyên tố cùng nhau. Điều đó có nghĩa là tồn tại một số nguyên tố p chia hết cả m và n.
Vì m là số lẻ, n là số lẻ và p là số nguyên tố chia hết cả m và n, vì vậy p không thể chia hết cho 2.
Ta biểu diễn m^2 - 2020n^2 + 2022 dưới dạng phân tích nhân tử:
m^2 - 2020n^2 + 2022 = (m - n√2020)(m + n√2020)
Vì p chia hết cả m và n, p cũng phải chia hết cho (m - n√2020) và (m + n√2020).
Tuy nhiên, ta thấy rằng (m - n√2020) và (m + n√2020) không thể cùng chia hết cho số nguyên tố p, vì chúng có dạng khác nhau (một dạng có căn bậc hai và một dạng không có căn bậc hai).
Điều này dẫn đến mâu thuẫn, do đó giả sử ban đầu là sai.
Vậy ta có kết luận rằng m và n là hai số tự nhiên lẻ và nguyên tố cùng nhau.
Bài này dễ thôi bạn !!!
Xét mọi p nguyên tố lẻ và p > 3=> p^2:3 dư 1 do 1 SCP : 3 dư 0 hoặc 1 và SCP đó không chia hết 3 do là SNT>3
=> 8p^2+1 chia hết cho 3 và > 3 do p > 3 => Là hợp số => Vô lí => Loại
Xét p=3 => 8p^2+2p+1=79 là SNT và 8p^2+1=73 là SNT lẻ (TMĐK)
=> ĐPCM.
b) A=m3+3m2-m-3
=(m-1)(m2+m+1) +m(m-1) +2(m-1)(m+1)
=(m-1)(m2+m+1+m+2m+2)
=(m-1)(m2+4m+4-1)
=(m-1)[ (m+2)2-1 ]
=(m-1)(m+1)(m+3)
với m là số nguyên lẻ
=> m-1 là số chẵn(nếu gọi m là 2k-1 thì 2k-1-1=2k-2=2(k-1)(chẵn)
m+1 là số chẵn (tương tự 2k11+1=2k(chẵn)
m+3 là số chẵn (tương tự 2k-1+3=2k++2=2(k+2)(chẵn)
ta có:gọi m là 2k-1 thay vào A ta có:(với k là số nguyên bất kì)
A=(2k-2)2k(2k+2)
=(4k2-4)2k
=8k(k-1)(k+1)
k-1 ;'k và k+1 là 3 số nguyên liên tiếp
=> (k-1)k(k+1) sẽ chia hết cho 6 vì trong 3 số liên tiếp luôn có ít nhất 1 số chia hết cho 2 , 1 số chia hết cho 3
=> tích (k-1)k(k+1) luôn chia hết cho 6
=> A=8.(k-1)(k(k+1) luôn chia hết cho (8.6)=48
=> (m3+3m3-m-3) chia hết cho 48(đfcm)
Bài này tương tự bài 20.7 trong quyển Tài liệu chuyên toán THCS 9 tập 1 của ông Tôn thân ý
Dùng phương pháp quy nạp nhé
Nếu n là số lẻ thì số lẻ nhân với một số lẻ được tích cũng là số lẻ => 3n là một số lẻ
Mà một số chẵn cộng với một số lẻ được tổng là một số lẻ => 3n + 2 là một số nguyên lẻ nếu n lẻ
3n + 2 là số nguyên lẻ <=> 3n là số nguyên lẻ . ( vì 2 là số nguyên chẵn ) .
<=> n là số nguyên lẻ .
Ngược lại : n là số nguyên lẻ
=> 3n là số nguyên lẻ .
=> 3n + 2 là số nguyên lẻ . ( vì 2 là số nguyên chẵn )
Do đó bài toán được chứng minh .