K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2018

Từ \(a+b+c=0\Leftrightarrow a+b=-c\)

                                    \(\Leftrightarrow\left(a+b\right)^3=-c^3\)

                                     \(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)

                                     \(\Leftrightarrow a^3+b^3+3ab\left(-c\right)=-c^3\)

                                     \(\Leftrightarrow a^3+b^3+c^3=3abc\)

22 tháng 7 2018

P/s : Đây là toán 8 .

Ta có : \(a^3+b^3+c^3-3abc\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

Do đó : Nếu có \(a+b+c=0\)(gt)

thì ta có : \(a^3+b^3+c^3-3abc=0\)(2)

Đảo lại khi có \(a^3+b^3+c^3-3abc=0\)

thì ta có : \(a+b+c=0\left(1\right)\)

\(\Rightarrow a^2+b^2+c^2-ab-ac-bc=0\)(3)

Từ (3) ta có : \(a=b=c\)(4)

Vậy nếu có \(a^3+b^3+c^3=3abc\)

\(\Rightarrow a+b+c=0\)( a=b=c )

\(\Rightarrow a^3+b^3+c^3=3abc\Rightarrow a+b+c=0\) (2) => (1)

\(a^3+b^3+c^3=3abc\Rightarrow a=b=c\)(2)=>(4)

17 tháng 7 2016

 Ta có :(a+b+c)3=a3+b3+c3+3a2b+3a2c+3b2c+3b2a+3c2a+3c2b+6abc

            (a+b+c)3=a3+b3+c3+(3a2b+3a2b+3abc)+(3b2c+3b2a+3abc)+(3c2a+3c2b+3abc)-3abc

            (a+b+c)3=a3+b3+c3+3ab(a+b+c)+3bc(a+b+c)+3ac(a+b+c)-3abc

            (a+b+c)3=a3+b3+c3+3(a+b+c)(ab+bc+ac)-3abc

  thay a+b+c=0 ta được 

              03=a3+b3+c3+3.0(ab+bc+ac)-3abc

             0=a3+b3+c3-3abc

=>a3+b3+c3=3abc

19 tháng 4 2020

Ta có : \(a+b+c=0\)

\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\a+c=-b\end{cases}}\) ( 1 )

Ta có : \(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right)^3=0\)

\(\Rightarrow\left[\left(a+b\right)+c\right]^3=0\)

\(\Rightarrow\left(a+b\right)^3+c^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2=0\)

\(\Rightarrow\left(a+b\right)^3+c^3+3\left(a+b\right)\left[\left(a+b\right)c+c^2\right]=0\)

\(\Rightarrow\left(a+b\right)^3+c^3+3\left(a+b\right)c\left(a+b+c\right)=0\)

\(\Rightarrow a^3+b^3+3a^2b+3ab^2+c^3+3\left(a+b\right)c\left(a+b+c\right)=0\)

\(\Rightarrow a^3+b^3+3ab\left(a+b\right)+c^3+3\left(a+b\right)c\left(a+b+c\right)=0\)

\(\Rightarrow a^3+b^3+c^3+3\left(a+b\right)\left[ab+c\left(a+b+c\right)\right]=0\)

\(\Rightarrow a^3+b^3+c^3+3\left(a+b\right)\left(ab+ca+cb+c^2\right)=0\)

\(\Rightarrow a^3+b^3+c^3+3\left(a+b\right)\left[\left(ab+ca\right)+\left(cb+c^2\right)\right]=0\)

\(\Rightarrow a^3+b^3+c^3+3\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]=0\)

\(\Rightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\) ( 2 ) 

Thay ( 1 ) vào ( 2 ) ta được :  

\(\Rightarrow a^3+b^3+c^3+3.\left(-c\right).\left(-a\right).\left(-b\right)=0\)

\(\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

20 tháng 4 2020

\(a^3 + b^3 + c^3 = (a+b)(a^2-ab+b^2) + 3ab(a+b) + c^3 - 3ab(a+b)\)

\(= (a+b)^3 + c^3 - 3ab(a+b)\)

\(= (a+b+c)(a^2 + 2ab + b^2 + ac + bc + c^2) - 3ab(a+b) \)

\(= 0 - 3ab(a+b)\)

Từ \(a+b+c = 0 => a+b = -c\)

Thay vào ta được : \(-3ab(a+b) = -3ab(-c) = 3abc\)

Lẹ hơn xíu ~

24 tháng 4 2017

M=1+2+3+4....+bc=abc

M=1+2+3+4....+bc=100a+bc

M=1+2+3+4....+n=100a

M= n(n+1)/2=100a

=>n(n+1) =200a

=> n=24 ( a=3)

vậy bc=25 => ab=32

11 tháng 1 2018

abc = 325

26 tháng 4 2018

ta có (ab+ac)/2 = (ba+bc)/3 = (ca+cb)/4 

=ab+ac-ba-bc+ca+cb/2-3+4 = 2ac/3

=ab+ac+ba+bc-ca-cb/2+3-4 = 2ab

=ab+ac-ba-bc-ca-cb/2-3-4 = 2bc/5

=> 2ac/3=2ab=2bc/5

Ta có 2ac/3=2ab/1 =>c/3 = b/1 => c/15 = b/5    (1)

          2ac/3 = 2bc/5 => a/3 = b/5                         (2)

từ (1) và(2) => a/3 = b/5 = c/15

23 tháng 12 2018

bạn 2-3-4=5 ??