Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
...
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(\Leftrightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Leftrightarrow A< 1-\frac{1}{100}< 1\left(đpcm\right)\)
giúp mk vs các bạn ưi ! mk đang cần gấp ai nhanh mik tích cho !nhanh nha help me!thank nhìu
sửa đề : \(\frac{9}{10!}+\frac{10}{11!}+\frac{11}{12!}+...+\frac{99}{100!}\)
\(=\frac{10-1}{10!}+\frac{11-1}{11!}+\frac{12-1}{12!}+...+\frac{100-1}{100!}\)
\(=\frac{1}{9!}-\frac{1}{10!}+\frac{1}{10!}-\frac{1}{11!}+\frac{1}{11!}-\frac{1}{12!}+...+\frac{1}{99!}-\frac{1}{100!}\)
\(=\frac{1}{9!}-\frac{1}{100!}< \frac{1}{9!}\left(đpcm\right)\)
Đặt A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{2010^2}\)
Ta có: \(\frac{1}{2^2}< \frac{1}{1\cdot2};\frac{1}{3^2}< \frac{1}{2\cdot3};\frac{1}{4^2}< \frac{1}{3\cdot4};....;\frac{1}{2010^2}< \frac{1}{2009\cdot2010}\)
=> A<\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2009\cdot2010}\)
\(\Leftrightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2009}-\frac{2}{2010}\)
\(\Leftrightarrow A< 1-\frac{1}{2010}\)
<=> A<1 (đpcm)
Ta có \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
...
\(\frac{1}{2010^2}< \frac{1}{2009.2010}\)
Cộng vế các BĐT trên ta được
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2010^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2010^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2010^2}< 1-\frac{1}{2010}< 1\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2010^2}< 1\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{2009^2}+\frac{1}{2010^2}>1\)
=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{2009^2}+\frac{1}{2010^2}>\frac{ }{ }\)\(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{2008.2009}+\frac{1}{2009.2010}\)
=\(\frac{1}{1}-\frac{1}{2010}=\frac{2010}{2010}-\frac{1}{2010}\)=\(\frac{2010}{2010}>\frac{1}{2010}=1>\frac{1}{2010}\)
Vậy \(1>\frac{1}{2010}\)
Bạn ơi sai đề nhé
Ta có \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{7\cdot8}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-....+\frac{1}{7}-\frac{1}{8}\)
\(\Rightarrow A< 1-\frac{1}{8}< 1\)
1-1/2+1/3-1/4+...+1/199-1/200
=(1+1/3+...+1/199)-(1/2+1/4+...+1/200)
=(1+1/2+1/3+...+1/199+1/200)-2(1/2+1/4+...+1/200)
=(1+1/2+1/3+...+1/199+1/200)-(1+1/2+...+1/100)
=1/101+1/102+...+1/200 (đpcm)
ta có
1/2^2 < 1/(1.2)= 1-1/2
1/3^2 <1/(2.3)=1/2-1/3
1/4^2 <1/(3.4)=1/3-1/4
......
1/100^2 < 1/99-1/100
cộng vế với vế ta được 1/2^2 +1/3^2+...< 1-1/2+1/2-1/3+....+1/99-1/100=1-1/100
=> 100/100-1/100
=>99/100
tk nha bn
99/100<1 bn nha