K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2017

tại f(x) = x2 -x -x + 2 =0 ta có
x(x-1) -(x-1) +1 =0
(x-1)(x-1) +1 =0
(x-1)2 +1 =0          (1)
Vì (x-1)2 \(\ge\)0
nên \(\left(x-1\right)^2+1\ge1>0\)
Vậy (1) là vô lí
Do đó đa thức f(x) = x^2 -x -x +2 vô nghiệm 
 

\(x^2+2x+3=0\)

\(=>\hept{\begin{cases}x^2=0\\2x=0\\3=0\end{cases}}\)

\(=>\hept{\begin{cases}x=0\\x=0\\3\end{cases}=>0+0+3\ne0}\)

=> \(x^2+2x+3\)vô nghiệm

21 tháng 6 2016

\(f\left(x\right)=x^2+2x+3=x^2+2x+1+2=\left(x+1\right)^2+2\)

Ta có: \(\left(x+1\right)^2\ge0\) với mọi \(x\in R\)

\(\Rightarrow\left(x+1\right)^2+2\ge2>0\)với mọi \(x\in R\)

\(\Rightarrow x^2+2x+3>0\) với mọi \(x\in R\)

Vậy đa thức \(f\left(x\right)=x^2+2x+3\) vô nghiệm

17 tháng 5 2018

Bạn dò lại đề nha

13 tháng 4 2016

có \(x^4+x^2\ge0\)

=> đa thức trên <0 

=> đt trên vô nghiệm

chú ý: đây là toán lớp 8 mà

10 tháng 4 2021

Bằng 2 cách

10 tháng 4 2021

f(x) đề có cho bằng 0 không vậy em ? 

21 tháng 2 2020

Ta xét 3 khoảng giá trị:

+) Nếu \(x\le0\)thì \(x^8\ge x^5;x^2\ge x\)(dễ thấy)

\(\Rightarrow x^8-x^5\ge0;x^2-x\ge0\)

\(\Rightarrow f\left(x\right)\ge1>0\)

Ở khoảng này f(x) vô nghiệm.

+) Nếu \(0< x< 1\)

Ta có: \(f\left(x\right)=1-\left[x^5-x^8+x-x^2\right]\)

\(=1-\left[x^5\left(1-x^3\right)+x\left(1-x\right)\right]\)

Vì 0 < x < 1 nên \(x^5,1-x^3>0\)

Áp dụng bđt Cauchy, ta được:

\(\sqrt{x^5\left(1-x^3\right)}\le\frac{x^5+1-x^3}{2}\)

\(\Rightarrow x^5\left(1-x^3\right)\le\left(\frac{x^5+1-x^3}{2}\right)^2\)

Tương tự ta có: \(x\left(1-x\right)\le\left(\frac{x+1-x}{2}\right)^2=\frac{1}{4}\)

Lúc đó \(x^5\left(1-x^3\right)+x\left(1-x\right)\le\left(\frac{1-\left(x^3-x^5\right)}{2}\right)^2+\frac{1}{4}\)

\(< \frac{1}{4}+\frac{1}{4}=\frac{1}{2}< 1\)(do x3 > x5 vì 0 < x < 1)

\(=1-\left[x^5\left(1-x^3\right)+x\left(1-x\right)\right]>0\)

Ở khoảng này đa thức cũng vô nghiệm.

+) Nếu \(x\ge0\)thì \(x^8\ge x^5;x^2\ge x\)

\(\Rightarrow x^8-x^5\ge0;x^2-x\ge0\)

\(\Rightarrow f\left(x\right)\ge1>0\)

Ở khoảng này đa thức cũng vô nghiệm.

Vậy đa thức f(x) vô nghiệm

4:

a: f(x)=0

=>-x-4=0

=>x=-4

b: g(x)=0

=>x^2+x+4=0

Δ=1^2-4*1*4=1-16=-15<0

=>g(x) ko có nghiệm 

c: m(x)=0

=>2x-2=0

=>x=1

d: n(x)=0

=>7x+2=0

=>x=-2/7

20 tháng 4 2016

vì a+b+c=2012

4a-2b+c=2036

=>a-b=8

9a+3b+c=2036

4a-2b+c=2036

=>a+b=0

tu dieuf tren =>a=4

b=-4

cau tu cmnoots nhé 

27 tháng 4 2017

Giả sử đa thức f(x) có nghiệm

=> \(x^2-x-x+2=0\)

\(\Rightarrow x\left(x-1\right)-\left(x-1\right)+3=0\)

\(\Rightarrow\left(x-1\right)^2=\left(-3\right)\) (Vô lý)

=> Vô nghiệm

27 tháng 4 2017

có vẻ là sai ...., ở dòng thứ 2 , từ trên xuống , bạn Nguyễn Hữu thế sai dấu (có vẻ mik ko biết nói sao cả )

===Mik làm lại nhé ====

Để f(x)có nghiệm thì f(x) = 0 (*)

Mà : f(x) = x2 -x -x +2 =x(x-1)- x+1 +1 ( bạn ý bị nhầm chỗ này )

=x(x-1) -( x-1) + 1 = (x-1)(x-1)+1 =(x-1)2 + 1 \(\ge1\) ( mâu thuẫn với (*) => f(x) không có nghiệm