K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2019

 Ta có : a=1 (gt)=> a^2 =1.1=1=a

                       => a^3 =1.1.1=1=a

1 tháng 3 2022

\(\overline{abc\equiv0}\) (mod 21)

<=> 100a +10b+c\(\equiv\)0 (mod 21)

<=> 84a+16a+10b+c\(\equiv\)0 (mod 21)

<=> 16a+10b+c\(\equiv\)0 (mod 21) vì 84\(⋮\)21

<=> 64a+40b+4c\(\equiv\)0 (mod 21)

<=> 63a+a+42b-2b+4c\(\equiv\)0 (mod 21)

<=> a-2b+4c\(\equiv\)0 (mod 21) đpcm

 

AH
Akai Haruma
Giáo viên
14 tháng 1 2020

Bạn tham khảo lời giải tại đây:

Câu hỏi của Angela jolie - Toán lớp 9 | Học trực tuyến

23 tháng 10 2018

1. \(A=\left(2^0+2^2+2^4+...+2^{2018}\right)+\left(2^1+2^3+...+2^{2017}\right)\)

\(=\left(1+2^2\right)+\left(2^4+2^6\right)+...+\left(2^{2016}+2^{2018}\right)+2^1+\left(2^3+2^5\right)+...+\left(2^{2015}+2^{2017}\right)\)

\(=\left(1+2^2\right)+2^4\left(1+2^2\right)+...+2^{2016}\left(1+2^2\right)+2^1+2^3\left(1+2^2\right)+...+2^{2015}\left(1+2^2\right)\)

\(=5\left(1+2^4+...+2^{2016}\right)+2+5\left(2^3+...+2^{2015}\right)\)chia 5 dư 2

Nhận xét: Vì 1+22 =5 chia chết cho 5. Ghép các cặp đôi sao cho xuất hiện 1+22

2,

Nhận xét: Với a không chia hết cho  5

Ta có: a4 đồng dư với 1 module 5 hay a4-1 chia hết cho 5 với mọi a không chia hết cho 5

Suy ra a5-a=a(a4-1) chia hết cho 5 với mọi a thuộc Z

a(a4-1)=a(a2-1)(a2+1) =a(a-1)(a+1)(a2+1) chia hết cho 2 và chia hết cho 3 vì a(a+1) là 2 số nguyên liên tiếp, a(a+1)(a-1) là 3 số nguyên liên tiếp

Vậy a5-a chia hết cho 30 (=2.3.5) vì (2,3,5)=1

(a15 + a25 + ... + an5) -(a+ a2+...+an) =( a15-a1)+...+(an5-an) chia hết cho 30

Mà a+ a2+...+achia hết cho 30 

Vậy a15 + a25 + ... + an5 chia hết cho 30 hay a15 + a25 + ... + an5 = 0 (mod 30)