Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 cách làm:
Cậu có thể đưa ra chữ số tận cùng của mỗi lũy thừa, ví dụ như thế này để tính
2^(4k+1) có tận cùng là 2 nên 2^2009 có tận cùng là 2(2009=4.502+1)
Bạn tham khảo lời giải tại đây:
Câu hỏi của Angela jolie - Toán lớp 9 | Học trực tuyến
\(\overline{abc\equiv0}\) (mod 21)
<=> 100a +10b+c\(\equiv\)0 (mod 21)
<=> 84a+16a+10b+c\(\equiv\)0 (mod 21)
<=> 16a+10b+c\(\equiv\)0 (mod 21) vì 84\(⋮\)21
<=> 64a+40b+4c\(\equiv\)0 (mod 21)
<=> 63a+a+42b-2b+4c\(\equiv\)0 (mod 21)
<=> a-2b+4c\(\equiv\)0 (mod 21) đpcm
a)
- Nếu A chia 4 dư 3 => A có 2 chữ số tận cùng chia 4 dư 3.
- Nếu A chia 5 dư 4 => A có tận cùng là 4 hoặc 9.
- Nếu tận cùng của A là 4 thì ta có: 14; 24; 34; 44; 54; 64; 74; 84; 94.
- Ta có:
+ 14; 34; 54; 74; 94 chia 4 dư 2 (loại)
+ 24; 44; 64; 84; chia hết cho 4 (loại)
- Vậy trong trường hợp A tận cùng bằng 4, ta không có kết quả đúng.
- Nếu tận cùng của A là 9 thì ta có: 19; 29; 39; 49; 59; 69; 79; 89; 99.
- Ta có:
+ 19; 39; 59; 79; 99 chia 4 dư 3 (thỏa mãn)
+ 29; 49; 69; 89 chia 4 dư 1 (loại)
- Vậy trong trường hợp A tận cùng là 9 thì ta có các kết quả thỏa mãn là: 19; 39; 59; 79; 99.
b) (Mk ko bt đồng dư mod là j, thôg cảm nhé, mk ko giải đc)
Ta có: p2-1 =(p-1)(p+1)
Vì (p-1)p(p+1) là tích 3 stn liên tiếp
=> chia hết cho 3
Mà p không chia hết cho 3 (do p nguyên tố > 3)
=>(p-1)(p+1) chia hết cho 3. (1)
Ta có p là snt >3
=>p lẻ
=>p-1 và p+1 là 2 stn chẵn liên tiếp
=>(p-1)(p+1) chia hết cho 8 (2)
Từ (1) và (2) và (8,3)=1
=>p2-1 chia hết cho 24
=> p2 đồng dư 1 ( mod 24)