K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2019

Sơ đồ con đường

Lời giải chi tiết

Bước 1. Phân tích sao cho tổng đó thành tích các thừa số trong đó có một thừa số chia hết cho 7.

Bước 2. Áp dụng tính chất chia hết của một tích.

Ta có:

A = 2 + 2 2 + 2 3 + … + 2 60     = 2 + 2 2 + 2 3 + 2 4 + 2 5 + 2 6 + … + 2 58 + 2 59 + 2 60     = 2. 1 + 2 + 2 2 + 2 4 . 1 + 2 + 2 2 + … + 2 58 . 1 + 2 + 2 2     = 2. 1 + 2 + 2 2 + 2 4 . 1 + 2 + 2 2 + … + 2 58 . 1 + 2 + 2 2     = 2 + 2 4 + … + 2 58 .7 ⇒ A ⋮ 7

27 tháng 11 2015

A=2+2^2+2^3+...+2^60

=(2+2^2)+(2^3+2^4)+...+(2^59+2^60)

=2(1+2)+2^3(1+2)+...+2^59(1+2)

=3(2+2^3+...+2^59) chia hết cho 3

A=2+2^2+2^3+...+2^60

=(2+2^2+2^3)+...+(2^58+2^59+2^60)

=2(1+2+2^2)+...+2^58(1+2+2^2)

=7(2+...+2^58) chia hết cho 7

A=2+2^2+2^3+...+2^60

=(2+2^2+2^3+2^4)+...+(2^57+2^58+2^59+2^60)

=2(1+2+2^2+2^3)+...+2^57(1+2+2^2+2^3)

=15(2+...+2^57) chia hết cho 15

 

23 tháng 11 2015

A=2+2^2+2^3+...+2^60

=>A=(2+2^2+2^3)+...+(2^58+2^59+2^60)

=>A=1.(2+2^2+2^3)+...+2^57(2+2^2+2^3)

=>A=1.14+...+2^57.14

=>A=14(1+...+2^57)

=>A=7.2.(1+...+2^57)

=>A chia hết cho 7

=>dpcm

22 tháng 7 2015

Nhóm các số hạng sao cho có tổng là 7; 11; 13 rồi dễ dàng làm được.       

25 tháng 9 2016

câu hỏi này đã được trả lời ở câu hỏi tương tự do bạn gửi

23 tháng 7 2015

A= 2+ 2^2 + 2^3+...+ 2^60

A=(2+2^2+2^3)+(2^4+2^5+2^6).....+(2^58+2^59+2^60)

A=2 x (1+2+2^2)+2^4 x (1+2+2^2)+.....+2^58 x  (1+2+2^2)

A=2 x 7 + 2^4 x 7.... +2^58 x 7

Vì mỗi số hạng đều chia hết cho 7 =) A chia hết cho 7

mấy bài kia tương tự hen

 

a) Ta có: \(\overline{abcdeg}=\overline{ab}.1000+\overline{cd}.100+\overline{eg}\)

                               \(=\overline{ab}.999+\overline{cd}.99+\overline{ab}+\overline{cd}+\overline{eg}\)

                               \(=\left(\overline{ab}.999+\overline{cd}.99\right)+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)

Vì \(\left(\overline{ab}.999+\overline{cd}.99\right)⋮11\)

và \(\left(\overline{ab}+\overline{cd}+\overline{cd}\right)⋮11\left(gt\right)\)

\(\Rightarrow\overline{abcdeg}⋮11\left(đpcm\right)\)

b) \(\cdot A=2+2^2+2^3+...+2^{60}\)

\(A=\left(2+2^2\right)+...+\left(2^{50}+2^{60}\right)\)

\(A=2.3+...+2^{50}.3\)

\(A=3\left(2+..+2^{50}\right)⋮3\)

các trường hợp còn lại tự lm nhé!!

 A= (21+22+23)+(24+25+26)+...+(258+259+260)

   =20(21+22+23)+23(21+22+23)+...+257(21+22+23)

   =(21+22+23)(20+23+...+257)

   =     14(20+23+...+257) chia hết cho 7

Vậy A chia hết cho 7     

25 tháng 6 2015

gọi 1/41+1/42+1/43+...+1/80=S

ta có :

S>1/60+1/60+1/60+...+1/60

S>1/60 x 40

S>8/12>7/12

Vậy S>7/12

1 tháng 10 2017

Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.

Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2

\(\Rightarrow\) ĐPCM

12 tháng 8 2015

a)$10^{28}$1028 chia 9 dư 1 

8 chia 9 dư 8

1 + 8 = 9 chia hết cho 9

$\Rightarrow$⇒$10^{28}+8$1028+8 chia hết cho 9 (1)

$10^{28}$1028 chia hết cho 8 (vì có 3 chữ số tận cùng là 000 chia hết cho 8)

8 chia hết cho 8

$\Rightarrow$⇒$10^{28}+8$1028+8 chia hết cho 8 (2)

Từ (1) và (2) kết hợp với ƯCLN (8,9) = 1 . Suy ra $10^{28}+8$1028+8 chia hết cho 72

b)$8^8+2^{20}=\left(2^3\right)^8+2^{20}=2^{24}+2^{20}=2^{20}\times\left(2^4+1\right)=2^{20}\times17$88+220=(23)8+220=224+220=220×(24+1)=220×17 chia hết cho 17

21 tháng 9 2015

Ta có: A= 2 + 2+ 2+ ... + 260= (2 +22) + (23+ 24) + ... + (259 + 260).

             = 2 x (2 + 1) + 2x (2 + 1) + ... + 259 x (2 + 1).

             = 2 x 3 + 23 x 3 + ... + 259 x 3.

             = 3 x ( 2 + 23 + ... + 259).

Vì A = 3 x ( 2 + 23 + ... + 259)  nên A chia hết cho 3.

           A= (2 +2+ 23) + (2+ 2 + 26) + ... + (258 + 259 + 260).

             = 2 x (1 + 2 + 22) + 24 x (1 + 2 + 22) + ... + 258 x (1 + 2 + 22).

             = 2 x 7 + 24 x 7 + ... + 258 x 7.

             = 7 x ( 2 + 24 + ... + 258).

Vì A = 7 x ( 2 + 24 + ... + 258)  nên A chia hết cho 7.