Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 2 + 22 + 23 + 24 + ... + 258 + 259 + 260
A = (2 + 22 + 23 + 24) + ... + (257 + 258 + 259 + 260)
A = (2.1 + 2.2 + 2.2.2 + 2.2.2.2) + ... + (257.1 + 257.2 + 257.2.2 + 257.2.2.2)
A = 2.(1 + 2 + 4 + 8) + ... + 257.(1 + 2 + 4 + 8)
A = 2.15 + ... + 257.15
A = 15.(2 + 25 + ... + 257) chia hết cho 15
=> A chia hết cho 15
làm đến bước chia hết cho 15 của khoi ly truong thì bạn làm tiếp là:
do A chia hết cho 15 => A chia hết cho 5 và 3
A= (21+22+23)+(24+25+26)+...+(258+259+260)
=20(21+22+23)+23(21+22+23)+...+257(21+22+23)
=(21+22+23)(20+23+...+257)
= 14(20+23+...+257) chia hết cho 7
Vậy A chia hết cho 7
gọi 1/41+1/42+1/43+...+1/80=S
ta có :
S>1/60+1/60+1/60+...+1/60
S>1/60 x 40
S>8/12>7/12
Vậy S>7/12
Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.
Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2
\(\Rightarrow\) ĐPCM
A=1+4+4^2+...+4^59A=1+4+4^2+...+4^59
A=(1+4)+(4^2+4^3)+...+(4^58+4^59)A=(1+4)+(4^2+4^3)+...+(4^58+4^59)
A=(1+4)+4^2(1+4)+...+4^58(1+4)A=(1+4)+4^2(1+4)+...+4^58(1+4)
A=5+4^2.5+...+4^58.5A=5+4^2.5+...+4^58.5
A=5(1+4^2+...+4^48)A=5(1+4^2+...+4^58)
A=5(1+4^2+...+4^58) chia hết cho 5
vậy A chia hết cho 5
A=1+4+4^2+...+4^59A=1+4+4^2+...+4^59
A=(1+4+4^2)+(4^3+4^4+4^5)+...+(4^57+4^58+4^59)A=(1+4+4^2)+(4^3+4^4+4^5)+...+(4^57+4^58+4^59)
A=(1+4+4^2)+4^3(1+4+4^2)+...+4^57(1+4+4^2)A=(1+4+4^2)+4^3(1+4+4^2)+...+4^57(1+4+4^2)
A=21+4^3.21+...+4^57.21A=21+4^3.21+...+4^57.21
A=21(1+4^3+...+4^57)A=21(1+4^3+...+4^57)
A=21(1+4^3+...+4^57) chia hết cho 21
vậy A chia hết cho 21
mik làm xong rồi nhớ k cho mik nha mik cảm ơn
A= 2+2^2+2^3+...+2^60
A=(2+2^2+2^3)+...+(2^58+2^59+2^60)
A= 2.7+...+2^58.7
A= 7(2+...+2^58)
=> A chia hết cho 7
A=2+2^2+2^3+2^4+2^5+2^6+...+2^58+2^59+2^60
=(2+2^2+2^3)+(2^4+2^5+2^6)+...+(2^58+2^59+2^60)
=2(1+2+2^2)+2^4(1+2+2^2)+...+2^58(1+2+2^2)
=(1+2+2^2)(2+2^4+...+2^58)
=7(2+2^4+...+2^58) chia hết cho 7
A=(2+22+23)+(24+25+26)+...+(258+259+260)
A=2(1+2+22)+24(1+2+22)+...+258(1+2+22)
A=2.7+24.7+...+258.7
A=7(2+24+...+258) chia hết cho 7
=> 2 + 22 + 23 + 24 + 25 + 26 + ... + 258 + 259 + 260 chia hết cho 7
Ta có: A= 2 + 22 + 23 + ... + 260= (2 +22) + (23+ 24) + ... + (259 + 260).
= 2 x (2 + 1) + 23 x (2 + 1) + ... + 259 x (2 + 1).
= 2 x 3 + 23 x 3 + ... + 259 x 3.
= 3 x ( 2 + 23 + ... + 259).
Vì A = 3 x ( 2 + 23 + ... + 259) nên A chia hết cho 3.
A= (2 +22 + 23) + (24 + 25 + 26) + ... + (258 + 259 + 260).
= 2 x (1 + 2 + 22) + 24 x (1 + 2 + 22) + ... + 258 x (1 + 2 + 22).
= 2 x 7 + 24 x 7 + ... + 258 x 7.
= 7 x ( 2 + 24 + ... + 258).
Vì A = 7 x ( 2 + 24 + ... + 258) nên A chia hết cho 7.