K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2019

#)Bạn tham khảo nhé :

Câu hỏi của Hằng Lê Thị - Toán lớp 6 - Học toán với OnlineMath

P/s : Bạn vào thống kê hỏi đáp của mk thì link ms hoạt động nhé !

bạn tham khảo nè

https://olm.vn/hoi-dap/detail/91914314882.html

hok tốt

5 tháng 12 2016

mình giải rồi không thấy ý kiến gì?

7 tháng 12 2017

1. Nhận xét rằng a là số tự nhiên lẻ và ab + 4 là một số chẵn.
Nếu d là một ước chung của a và ab + 4 ( d > 1), thì do a lẻ nên d phải là số lẻ.
Do ab chia hết cho d nên 4 chia hết cho d, suy ra d  \(\in\) { 2; 4 }.  (mâu thuẫn)..
b) Gọi d là ước chung lớn nhất của n + 2 và 3n + 11.
Suy ra \(\hept{\begin{cases}n+2⋮d\\3n+11⋮d\end{cases}\Rightarrow\hept{\begin{cases}3n+6⋮d\\3n+11⋮d\end{cases}}}\).
Suy ra \(3n+11-\left(3n+6\right)=5⋮d\)
Vì vậy d  = 1 hoặc d = 5.
Để n + 2 và 3n + 11 là hai số nguyên tố cùng nhau thì d = 1.
Nếu giả sử ngược lại \(\hept{\begin{cases}n+2⋮5\\3n+11⋮5\end{cases}}\) \(\Leftrightarrow n+2⋮5\).
Suy ra \(n\) chia 5 dư 3 hay n = 5k + 3.
Vậy để n + 2 và 3n + 11 là hai số nguyên tố cùng nhau, thì n chia cho 5 dư 0, 1, 2, 4 hay n = 5k, n = 5k +1, n = 5k + 2, n = 5k + 4.

 

29 tháng 3 2015

đề bài là như vậy phải ko: Chứng minh rằng với n là số tự nhiên lẻ thì n3+1 không thể là số chính phương?

giả sử 

n^3 +1 = a^2 , a là số tự nhiên

=>n>a>0

=>n lớn hơn hoặc bằng a+1

=> a^2 = n^3 +1 lớn hơn hoặc bằng (a+1)^3 +1

=>a^3 + 2a^2 +3a +2 nhỏ hơn hoặc bằng không

=> a=0

=> n= -1 vô lí

=> đpcm

9 tháng 10 2021

Ko hiểu, tại sao n>a vậy. Thấy từ dòng n^3+1=a^2 => n>a ko thấy hợp lí cho lắm vì n với a chả có mối quan hệ nào cả, nếu n=1 thì a=căn2, vậy a>n mới đúng chứ

9 tháng 12 2019

1. Câu hỏi của Mai Hà My - Toán lớp 6 - Học toán với OnlineMath

9 tháng 1 2017

Vì 2n+1 là số chính phương lẻ nên 

2n+1≡1(mod8)⇒2n⋮8⇒n⋮42n+1≡1(mod8)⇒2n⋮8⇒n⋮4

Do đó n+1 cũng là số lẻ, suy ra

n+1≡1(mod8)⇒n⋮8n+1≡1(mod8)⇒n⋮8

Lại có

(n+1)+(2n+1)=3n+2(n+1)+(2n+1)=3n+2

Ta thấy

3n+2≡2(mod3)3n+2≡2(mod3)

Suy ra

(n+1)+(2n+1)≡2(mod3)(n+1)+(2n+1)≡2(mod3)

Mà n+1 và 2n+1 là các số chính phương lẻ nên

n+1≡2n+1≡1(mod3)n+1≡2n+1≡1(mod3)

Do đó

n⋮3n⋮3

Vậy ta có đpcm.

9 tháng 1 2017

cảm ơn bạn nhiều !!