K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2017

Vì n là số lẻ nên n2004 là số lẻ nên n2004+1 là số chẵn nên n2004+1 chia hết cho 2                          (1)

Ta có:\(n^{2004}+1=\left(n^{1002}\right)^2+1\).

Vì số chình phương chia cho 4 chỉ dư 0 hoặc 1 nên \(\left(n^{1002}\right)^2\) chia 4 chỉ dư 0 hoặc 1

Nên \(\left(n^{1002}\right)^2+1\) không chia hết cho 4                             (2)

Từ (1) và (2).Vì \(\left(n^{1002}\right)^2+1\) chia hết cho 2 mà không chia hết cho 4 nên không là số chính phương

\(\Rightarrowđpcm\)

17 tháng 4 2016

acswrdwrdewredryrfgytrutyut

jrhjrhejhtrttt

gjgrhgwerhj34wr

hfurjr34.wtb4wg5  

31 tháng 5 2021

Vì a và b là 2 số lẻ liên tiếp => a=4k+1 và b=4k+3

=>(a+b):2=(4k+3+4k+1):2=(8k+4):2=4k+2

Vì 4k+2 chia hết cho 2 và 4k+2>2=>4k+2 là HS

=>(a+b):2 là HS

27 tháng 6 2019

#)Bạn tham khảo nhé :

Câu hỏi của Hằng Lê Thị - Toán lớp 6 - Học toán với OnlineMath

P/s : Bạn vào thống kê hỏi đáp của mk thì link ms hoạt động nhé !

bạn tham khảo nè

https://olm.vn/hoi-dap/detail/91914314882.html

hok tốt

23 tháng 11 2016

1+2-3-4+5+6-7-8+9+10-.........+2010-2011-2012+2013+2014-2015-2016+2017

= 1+(2-3-4+5)+(6-7-8+9)+(10-11-12+13)+.......+(2014-2015-2016+2017)

= 1 + 0 + 0 + 0 + .........+ 0

= 1

24 tháng 11 2016

Giả sử a là số nguyên tố chia 12 dư 9

=> a = 12k + 9 ( k \(\in\)N* )

= 3(4k + 3 ) chia hết cho 3

=> a chia hết cho 3. Mà a là số nguyên tố

=> a = 3

Mà 3 chia 12 dư 3

=> Điều giả sử trên là sai !

Vậy không có số nguyên tố nào chia 12 dư 9

\(n=2004^4+2004^3+2004^2+23\)

\(=0^4+0^3+0^2+2\)(mod 3)

Vậy n = 3k + 2n = 3k + 2 (k ∈ N) nên n không là số chính phương (đpcm) 
Suy ra n = 20044 + 20043 + 20042 + 23 không phải là số chính phương.

5 tháng 7 2017

trong câu hỏi tương tự có bn ơi

...

...

21 tháng 8 2017

n(3n+1) 

=> Nếu n là chẵn thì 3n là chẵn vậy 3n+1 là số lẻ  

n(3n+1) là chẵn

=> Nếu n là lẻ thì 3n cũng là lẻ và 3n+1 là chẵn

Vậy với các số tự nhiên thì n(3n+1) là chẵn

21 tháng 8 2017

LÀ CHẴN

Bài 2: 

Số số hạng là:

(2n-1-1):2+1=n(số)

Tổng là:

\(\dfrac{\left(2n-1+1\right)\cdot n}{2}=\dfrac{2n^2}{2}=n^2\) là số chính phương(đpcm)