Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì n là số lẻ nên n2004 là số lẻ nên n2004+1 là số chẵn nên n2004+1 chia hết cho 2 (1)
Ta có:\(n^{2004}+1=\left(n^{1002}\right)^2+1\).
Vì số chình phương chia cho 4 chỉ dư 0 hoặc 1 nên \(\left(n^{1002}\right)^2\) chia 4 chỉ dư 0 hoặc 1
Nên \(\left(n^{1002}\right)^2+1\) không chia hết cho 4 (2)
Từ (1) và (2).Vì \(\left(n^{1002}\right)^2+1\) chia hết cho 2 mà không chia hết cho 4 nên không là số chính phương
\(\Rightarrowđpcm\)
acswrdwrdewredryrfgytrutyut
jrhjrhejhtrttt
gjgrhgwerhj34wr
hfurjr34.wtb4wg5
Vì a và b là 2 số lẻ liên tiếp => a=4k+1 và b=4k+3
=>(a+b):2=(4k+3+4k+1):2=(8k+4):2=4k+2
Vì 4k+2 chia hết cho 2 và 4k+2>2=>4k+2 là HS
=>(a+b):2 là HS
#)Bạn tham khảo nhé :
Câu hỏi của Hằng Lê Thị - Toán lớp 6 - Học toán với OnlineMath
P/s : Bạn vào thống kê hỏi đáp của mk thì link ms hoạt động nhé !
bạn tham khảo nè
https://olm.vn/hoi-dap/detail/91914314882.html
hok tốt
1+2-3-4+5+6-7-8+9+10-.........+2010-2011-2012+2013+2014-2015-2016+2017
= 1+(2-3-4+5)+(6-7-8+9)+(10-11-12+13)+.......+(2014-2015-2016+2017)
= 1 + 0 + 0 + 0 + .........+ 0
= 1
Giả sử a là số nguyên tố chia 12 dư 9
=> a = 12k + 9 ( k \(\in\)N* )
= 3(4k + 3 ) chia hết cho 3
=> a chia hết cho 3. Mà a là số nguyên tố
=> a = 3
Mà 3 chia 12 dư 3
=> Điều giả sử trên là sai !
Vậy không có số nguyên tố nào chia 12 dư 9
\(n=2004^4+2004^3+2004^2+23\)
\(=0^4+0^3+0^2+2\)(mod 3)
Vậy n = 3k + 2n = 3k + 2 (k ∈ N) nên n không là số chính phương (đpcm)
Suy ra n = 20044 + 20043 + 20042 + 23 không phải là số chính phương.
n(3n+1)
=> Nếu n là chẵn thì 3n là chẵn vậy 3n+1 là số lẻ
n(3n+1) là chẵn
=> Nếu n là lẻ thì 3n cũng là lẻ và 3n+1 là chẵn
Vậy với các số tự nhiên thì n(3n+1) là chẵn
Bài 2:
Số số hạng là:
(2n-1-1):2+1=n(số)
Tổng là:
\(\dfrac{\left(2n-1+1\right)\cdot n}{2}=\dfrac{2n^2}{2}=n^2\) là số chính phương(đpcm)