K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2016

\(7^1+7^2+...+7^{4n-1}+7^{4n}\)

\(=\left(7^1+7^2+7^3+7^4\right)+...+\left(7^{4n-3}+7^{4n-2}+7^{4n-1}+7^{4n}\right)\)

\(=7^1\left(1+7+7^2+7^3\right)+...+7^{4n-3}\left(1+7+7^2+7^3\right)\)

\(=7^1\cdot400+...+7^{4n-3}\cdot400\)

\(=400\left(7^1+...+7^{4n-3}\right)⋮400\)

17 tháng 1 2017

71 + 72 + 73 + 74 + ... + 74n - 1 + 74n

= (71 + 72 + 73 + 74) + (75 + 76 + 77 + 78) + ... + (74n - 3 + 74n - 2 + 74n - 1 + 74n)

= 71 . (1 + 7 + 72 + 73) + 75 . (1 + 7 + 72 + 73) + ... + 74n - 3 . (1 + 7 + 72 + 73)

= 71 . 400 + 75 . 400 + ... + 74n - 3 . 400

= 400 . (71 + 75 + ... + 74n - 3)

Vì 400 \(⋮\)400 nên suy ra 400 . (71 + 75 + ... + 74n - 3) \(⋮\)400

Vậy ....

~.~

9 tháng 7 2016

Ta có 4n+6=2(2n+3) chia hết cho 2

(4n+6)(5n+6)=2(2n+3)(5n+6) chia hết cho 2

 

9 tháng 7 2016

\(\left(4n+6\right)\left(5n+7\right)\)

\(=\left[2.\left(2n+3\right)\right]\left(5n+7\right)\)

\(=2.\left[\left(2n+3\right)\left(5n+7\right)\right]\)chia hết cho 2.

\(\left(4n+6\right)\left(5n+7\right)\)

\(=20n+28n+30n+42\)

\(=2\left(10n+14n+15n+21\right)\)

\(=2\left(39n+21\right)\)chia  hết cho 2 

\(=>\left(4n+6\right)\left(5n+7\right)\)chia hết cho 2

3 tháng 3 2016

Nếu n=0 thì 2^2^4n + 1 +7 =11 chia hết cho 11

Nếu n > 0 thì 2^2^4n + 1 =2^2^4n × 2^2^4n.   (1)

Có:

2^4n=.......6=......5+1=5x +1 

Vì ....5 lẻ ;5 lẻ suy ra 5 lẻ nên 2^2^4n =2^5x+1

2^5 đồng dư vs -1 ( mod 11) suy ra (2^5)^x đồng dư với -1( mod 11) ( vì x lẻ)

Suy ra (2^5)^x +1 chia hết cho 11

=) 2× [(2^5)^x +1] chia hết cho 11 (=) 2^5x+1 +2 chia hết cho 11

hay 2^2^4n +2 chia hết cho 11

Lại có 2^2^4n đồng dư với -2 ( mod 11)

Từ (1);(2) suy ra : 2^2^4n × 2^2^4n đồng dư vs 4 (mod 11)

Suy ra 2^2^4n+1 đồng dư vs 4 ( mod 11)

Vậy 2^2^4n+1+7 chia hết cho 11