Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Giải:
Đặt \(A_n=11^{n+2}+12^{2n+1}\)\((*)\) Với \(n=0\) ta có:
\(A_0=11^2+12^1=133\) \(⋮133\Rightarrow\) \((*)\) đúng
Giả sử \((*)\) đúng đến giá trị \(k=n\) tức là:
\(B_k=11^{k+2}+12^{2k+1}\) \(⋮133\left(1\right)\)
Xét \(B_{k+1}-B_k\)
\(=11^{k+1+2}+12^{2\left(k+1\right)+1}-\left(11^{k+2}+12^{2k+1}\right)\)
\(=11^{k+3}-11^{k+2}+12^{2k+3}-12^{2k+1}\)
\(=10.11^{k+2}+143.12^{2k+1}\)
\(=10.121.11^k+143.12.144^k\)
\(\equiv\) \(10.121.11^k+10.12.11^k\)
\(\equiv\) \(10.11^k\left(121+12\right)\) \(\equiv\) \(0\left(mod133\right)\)
Theo giả thiết quy nạy \(\left(1\right)\) ta có: \(B_k⋮133\Leftrightarrow B_{k+1}⋮133\)
Hay \((*)\) đúng với \(n=k+1\) \(\Rightarrow\) Đpcm
Ta có : 74n - 1 = ( 74 )n - 1 = 2401n - 1 = ...1 - 1 = ...0
Vì \(0⋮5\)
=> ...0 \(⋮\)5
Vậy ...
Chúc mng học tốt ❀
Ta có :
Xét : \(7^{4n}-1\)
\(=\left(7^4\right)^n-1\)
\(=2401^n-1\)
Mà chữ số có tận cùng bằng 1 lũy thừa với bất kì số nào cũng có tận cùng bằng 1
\(=\left(......1\right)-1\)
\(=\left(.....0\right)\)
Mà số có tận cùn bằng 0 thì \(⋮5\)
\(\Rightarrow7^{4n}-1⋮5\)
Nếu n=0 thì 2^2^4n + 1 +7 =11 chia hết cho 11
Nếu n > 0 thì 2^2^4n + 1 =2^2^4n × 2^2^4n. (1)
Có:
2^4n=.......6=......5+1=5x +1
Vì ....5 lẻ ;5 lẻ suy ra 5 lẻ nên 2^2^4n =2^5x+1
2^5 đồng dư vs -1 ( mod 11) suy ra (2^5)^x đồng dư với -1( mod 11) ( vì x lẻ)
Suy ra (2^5)^x +1 chia hết cho 11
=) 2× [(2^5)^x +1] chia hết cho 11 (=) 2^5x+1 +2 chia hết cho 11
hay 2^2^4n +2 chia hết cho 11
Lại có 2^2^4n đồng dư với -2 ( mod 11)
Từ (1);(2) suy ra : 2^2^4n × 2^2^4n đồng dư vs 4 (mod 11)
Suy ra 2^2^4n+1 đồng dư vs 4 ( mod 11)
Vậy 2^2^4n+1+7 chia hết cho 11