K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2016

3n+3+3n+1+2n+3+2n+2

=3n.33+3n.3+2n.23+2n.22

=3n(33+3)+2n(23+22)

=3n.30+2n.12

Vì 3n.30 chia hết cho 6(vì 30 chia hết cho 6)

2n.12 chia hết cho 6(vì 12 chia hết cho 6)

=>3n.30+2n.12 chia hết cho 6

=>đpcm

ta có: M=n^3+3n^2+2n=2n(n+1)+n^2(n+1)=n(n+1)(n+2)

ta thấy n(n+1)(n+2) là tích của 3 số nguyên liên tiếp

=>tồn tại 1 số chia hết cho 2(vì n(n+1) là tích 2 số nguyên liên tiếp) (với n thuộc Z)

tồn tại 1 số chia hết cho 3( vì n(n+1)(n+2) là tích 3 số nguyên liên tiếp)

=>n(n+1)(n+2) chia hết cho 2.3(vì (2;3)=1)

=>n(n+1)(n+2) chia hết cho 6

=>n^3+3n^2+2n chia hết cho 6

có chỗ nào ko hiểu thì hỏi mk nhé

 

29 tháng 1 2016

chia hết cho bao nhiêu???

18 tháng 3 2017

a)2n+17/n-3
=>(2n-6)+23/n-3
=>2(n-3)+23/n-3
=>2+23/n-3
=>23/n-3
=>(n-3)=Ư(23)={1;-1;23;-23}
n-3=1=>n=4
n-3=-1=>n=2
n-3=23=>n=26
n-3=-23=>n=-20
Còn câu B thì bạn tự làm nhé!

8 tháng 9 2019

\(3n-2⋮2n+1\)

\(\Leftrightarrow2.\left(3n-2\right)⋮2n+1\)

\(\Leftrightarrow6n-4⋮2n+1\)

\(\Leftrightarrow3\left(2n+1\right)-7⋮2n+1\)

Mà \(3\left(2n+1\right)⋮2n+1\)

\(\Rightarrow7⋮2n+1\)

\(\Rightarrow2n+1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

Làm nốt

3 tháng 1 2016

giải cả cách làm giùm mk dc k

 

18 tháng 4 2020

53n.52+22n.23=125n.25+4n.8

vì 125n đồng dư với 4n

=> dãy trên đồng dư với 4 . 25 + 4n.8=4n.(8+25)=4n.33 

vì 33 chia hết cho 11 =>đpcm

AH
Akai Haruma
Giáo viên
13 tháng 12 2021

Lời giải:
$M=3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}=3^{n+1}.3^2+3^{n+1}+2^{n+2}.2+2^{n+2}$

$=3^{n+1}(9+1)+2^{n+2}(2+1)$

$=3^{n+1}.10+2^{n+2}.3$

$=6.3^n.5+6.2^{n+1}=6(3^n.5+2^{n+1})\vdots 6$ (đpcm)

20 tháng 11 2017

A, 

Từ đề bài ta có

\(2n+3;2n+2⋮d\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

suy ra d=1 suy ra đpcm

B nhân 3 vào số đầu tiên

nhâm 2 vào số thứ 2

rồi trừ đi được đpcm

C,

Nhân 2 vào số đầu tiên rồi trừ đi được đpcm

14 tháng 12 2022

    3n+4+3n+2 + 2n+3 + 2n+1

=  3n.( 34 + 32) + 2n.( 23+2)

= 3n.90 + 2n.10

= 10.( 3n.9+2n.5)

vì 10 ⋮ 5 ⇔ 10.( 3n.9 + 2n.5) ⋮ 5 ⇔ 3n+4+3n+2+2n+2+2n+1 ⋮ 5(đpcm)