Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 3n chia hết cho 5-2n
Suy ra :2x3n chia hết cho 5-2n
hay 6n chia hết cho 5-2n (1)
Lại có :5-2n chia hết cho 5-2n
Suy ra :3x(5-2n) chia hết cho 5-2n
hay 15-6n chia hết cho 5-2n (2)
Từ (1) và (2) suy ra
6n+(15-6n) chia hết cho 5-2n
hay 15 chia hết cho 5-2n
Suy ra 5-2n E Ư(15)={1;3;5;15}
-Xét trường hợp 1
5-2n=1
2n =5-1
2n =4
n =2 (thỏa mãn n E N)
-Xét trường hợp 2
5-2n =3
2n =5-3
2n =2
n =1 (thỏa mãn n E N)
-Xét trường hợp 3
5-2n=5
2n =5-5
2n =0
n =0 (thỏa mãn n E N)
-Xét trường hợp 4
5-2n=15
2n =5-15
2n =-10
n =-5 (loại vì n không thuộc N)
Vậy n E {0;1;2}
Bài 1: Bạn vào câu hỏi tương tự có câu trả lời của mình rồi đó.
Bài 2:
a) n+2 chia hết cho n
=>2 chia hết cho n
=>n=Ư(2)=(1,2)
b)3n+5 chia hết cho n
=>5 chia hết cho n
=>n=Ư(5)-(1,5)
c)14-3n chia hết cho n
=>14 chia hết cho n
=>n=Ư(14)=(1,2,7,14)
d)n+5 chia hết cho n+1
=>(n+1)+4 chia hết cho n+1
=>n+1=Ư(4)=(1,2,4)
=>n=(0,1,3)
e)3n+4 chia hết cho n-1
=>3n-3+3+4 chia hết cho n-1
=>3.(n-1)+7 chia hết cho n-1
=>7 chia hết cho n-1
=>n-1=Ư(7)=1,7)
=>n=(2,8)
f)2n+1 chia hết cho 16-2n
=>2n+1>16-2n
=>2n+1-2n>16-2n-2n
=>1>16-4n
=>16n-4n=0
=>4n=16
=>n=4
n+6 ⋮ n-5
Vì n-5 ⋮ n-5
=> n+6 - (n-5) ⋮ n-5
=> n+6 - n+5 ⋮ n-5
=> 11 ⋮ n-5
=> n-5 \(\in\)Ư(11)
=> n-5 \(\in\){1;-1;11;-11}
=> n \(\in\){6;4;16;-6}
Vậy...
3n+22 ⋮ n-5
Vì 3(n-5) ⋮ n-5
=> 3n+22 - 3(n-5) ⋮ n-5
=> 3n+22 - 3n+15 ⋮ n-5
=> 37 ⋮ n-5
=> n-5 \(\in\)Ư(37)
=> n-5 \(\in\){1;-1;37;-37}
=> n \(\in\){6;4;42;-32}
Vậy...
2(n+1) ⋮ n-2
Vì 2(n-2) ⋮ n-2
=> 2(n+1) - 2(n-2) ⋮ n-2
=> 2n+2 - 2n+4 ⋮ n-2
=> 6 ⋮ n-2
=> n-2 \(\in\)Ư(6)
=> n-2 \(\in\){1;-1;2;-2;3;-3;6;-6}
=> n \(\in\){3;1;4;0;5;-1;8;-4}
Vậy...
a, n - 1 chia hết cho n - 1 => 3 ( n -1 ) chia hết cho n - 1 => 3n - 3 chia hết cho n - 1
Mà 3n + 2 = 3n - 3 + 5 Vì 3n - 3 chia hết cho n - 1 => 5 chia hết cho n - 1
=> n - 1 thuộc 1 và 5 => n thuộc 2 và 6
b, Tương tự
c, \(\hept{\begin{cases}n^2+5⋮n+1\\n+1⋮n+1\end{cases}}\Rightarrow\hept{\begin{cases}n^2+5⋮n+1\\n^2+n⋮n+1\end{cases}}\Rightarrow5-n⋮n+1\)
\(\hept{\begin{cases}5-n⋮n+1\\n+1⋮n+1\end{cases}}\Rightarrow5-n+n+1⋮n+1\)
\(\Rightarrow6⋮n+1\Rightarrow n+1\inƯ\left(6\right)\Rightarrow n+1\in\left\{1;2;3;6\right\}\Rightarrow n\in\left\{0;1;2;5\right\}\)
a) Ta có : 3n + 2 chia hết cho n - 1
=> 3n + 2 - 3.( n - 1) chia hết cho n - 1
=> 3n + 2 - ( 3n - 3 ) chia hết cho n - 1
=> 3n + 2 - 3n + 3 chia hết cho n - 1
=> 5 chia hết cho n -1
=> n -1 thuộc Ư(5) = { 1 ; - 1 ; 5 ; -5}
Ta có bảng ;
n-1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -6 |
Vậy n thuộc { 2;0;6;-6}
b) Ta có : 3n + 24 chia hết cho n -4
=> 3n + 24 - 3.(n-4) chia hết cho n -4
=> 3n + 24 - (3n - 12 ) chia hết cho n -4
=> 3n + 24 - 3n + 12 chia hết cho n -4
=> 36 chia hết cho n -4
=> n - 4 thuộc Ư(36) ( bạn tự làm nhé)
c) Tương tự nhé
Lưu ý là lớp 6 không cần thiết phải viết dấu "=>".
a. Với số tự nhiên n.
Ta có: \(3n+15⋮n+4\) và \(3\left(n+4\right)⋮n+4\)
=> \(\left(3n+15\right)-3\left(n+4\right)⋮n+4\)
=> \(3n+15-3n-12⋮n+4\)
=> \(\left(3n-3n\right)+\left(15-12\right)⋮n+4\)
=> \(3⋮n+4\)
=> \(n+4\in\left\{1;3\right\}\)
+) Với n + 4 = 1 vô lí vì n là số tự nhiên.
+) Với n + 4 = 3 vô lí vì n là số tự nhiên
Vậy không có n thỏa mãn.
b) Với số tự nhiên n.
Có: \(\left(4n+20\right)⋮\left(2n+5\right)\) và \(2\left(2n+5\right)⋮\left(2n+5\right)\)
=> \(\left(4n+20\right)-2\left(2n+5\right)⋮2n+5\)
=> \(4n+20-4n-10⋮2n+5\)
=> \(\left(4n-4n\right)+\left(20-10\right)⋮2n+5\)
=> \(10⋮2n+5\)
=> \(2n+5\in\left\{1;2;5;10\right\}\)
+) Với 2n + 5 = 1 loại
+) với 2n + 5 = 2 loại
+) Với 2n + 5 =5
2n = 5-5
2n = 0
n = 0 Thử lại thỏa mãn
+ Với 2n + 5 = 10
2n = 10 -5
2n = 5
n = 5/2 loại vì n là số tự nhiên.
Vậy n = 0.
Vì quá nhiều nên mk làm sơ sơ thôi
a) 15 chia hết cho n+1
=> n+1 thuộc Ư(15)={-15;-14;...14;15}
=> n thuộc { -16;-15;...;13;14}
b) 3n+5 chia hết cho n+1
=> 3n+3+2=3(n+1)+2 chia hết cho n+1
Do 3(n+1) chia hết cho n+1 => 2 chia hết cho 1 ( đến đây làm tương tự câu a)
c) n+7 chia hết cho n+1
=> (n+1)+6 chia hết cho n+1
=> 6 chia hết cho n+1 ( cũng làm tương tự)
d) 4n+7 chia hêt cho n-2
=> (4n-8)+15 chia hết cho n-2
=> 4(n-2) + 15 chia hết cho n-2
=> n-2 thuộc Ư(15)={-15;-14;...;14;15}
=> n thuộc {-13;-14;...;16;17}
e) 5n+8 chia hết cho n-3
=> (5n-15)+23 chia hết cho n-3
=> 5(n-3)+23 chia hết cho n-3 ( đến đây thì giống câu trên nhé)
f) 6n+8 chia hết cho 3n+1
=> 2(3n+1)+6 chia hết cho 3n+1
=> 3n+1 thuộc Ư(6) ( đến đây bạn tự làm giống n~ câu trên nhé
a) Vì 15 chia hết cho n + 1
=> n + 1 thuộc ước của 15
n + 1 thuộc { 1 ; 3 ; 5 ; 15 }
=> n thuộc { 0 ; 2 ; 4 ; 14 }
a) P = (4n-5)/(2n-1) = (4n-2 - 3)/(2n-1) = 2 - 3/(2n-1)
P thuộc Z khi và chỉ khi 3/(2n-1) thuộc Z <=> 2n-1 là ước của 3
* 2n - 1 = -1 <=> n = 0
* 2n - 1 = -3 <=> n = -1 (loại, vì n tự nhiên)
* 2n - 1 = 1 <=> n = 1
* 2n - 1 = 3 <=> n = 2
Vậy có 3 giá trị của n tự nhiên là: 0, 1, 2
*kí hiệu thuộc vs ước bạn tự viết nha*
b) mk lười làm nên bạn tham khảo ở link này nha ^^: https://olm.vn/hoi-dap/question/12009.html
a, ( 4n - 5 ) chia het cho ( 2n - 1 )
=> ( n + n + n + n - 1 - 1 - 1-1 -1) chia het cho ( 2n - 1 )
=>. ( 2n + 2n - 1 - 1 - 3 ) chia het cho ( 2n -1 )
=> [ ( 2n - 1 ) + ( 2n - 1 ) - 3 ] chia het cho (2n-1)
Vi ( 2n-1) chia het cho ( 2n - 1 )
=> 3 chia het cho ( 2n - 1 )
=> 2n - 1 thuoc U(3)
=> 2n - 1 thuoc { 1; 3}
=> 2n thuoc { 0 ; 2 }
=> n thuoc { 0 ; 1 }
Vay n thuoc { 0; 2 }
Phan b, ban lm tuong tu nha !
Tham khao nha !
a) Ta có: \(3n+24⋮n-4\)
\(\Leftrightarrow3n-12+36⋮n-4\)
mà \(3n-12⋮n-4\)
nên \(36⋮n-4\)
\(\Leftrightarrow n-4\inƯ\left(36\right)\)
\(\Leftrightarrow n-4\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;9;-9;12;-12;18;-18;36;-36\right\}\)
hay \(n\in\left\{5;3;6;2;7;1;8;0;10;-2;13;-5;16;-8;22;-14;40;-32\right\}\)
Vậy: \(n\in\left\{5;3;6;2;7;1;8;0;10;-2;13;-5;16;-8;22;-14;40;-32\right\}\)
giải cả cách làm giùm mk dc k