K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2016

đặt vế trái là A ta có

A<1/25.16+1/45.14=214/225=1-11/225

39/40=1-1/40

ta có 1.225<11.40=>1/40<11/225=>1-1/40>1-11/225=>214/225<39/40 mà A<214/225=>A<39/40(đpcm

nhớ k cho mk nha

6 tháng 4 2016

<1/25+1/25+...+1/25+1/40+1/40+1/40+...+1/40

=1/25.15+1/40.15=15/25+15/40=3/5+3/8=39/40

4 tháng 4 2016

đặt vế trái là A ta có A<1/25.16+1/45.14=214/225=1-11/225 39/40=1-1/40 ta có 1.225<11.40=>1/40<11/225=>1-1/40>1-11/225=>214/225<39/40 mà A<214/225=>A<39/40(đpcm nhớ k cho mk nha

5 tháng 4 2016

Ta có : 1/25 + 1/26 + 1/27 +.....+1/39 < 1/25 + 1/25 + .....+1/25 = 15/25 = 3/5

1/40+1/41 +.....+1/54 < 1/40 + 1/40 +....+1/40 = 15/40 = 3/8

=> A = 1/25 + 1/26 + 1/27 +.......+1/54 < 3/5 + 3/8 = 39/40

=> A < 39/40   (đpcm)

5 tháng 2 2020

Ta có : \(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{2}+...+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\)

Khi đó : \(\left(\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\right):\left(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{49.50}\right)\)

\(=\left(\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\right):\left(\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\right)=1\) (đpcm)

5 tháng 2 2020

Ta có : \(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

\(\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+...+\frac{1}{25}\right)=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\)

Khi đó \(\frac{\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}}{\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{49.50}}=\frac{\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}}{\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}}=1\left(\text{đpcm}\right)\)

29 tháng 12 2017

Câu 2:

\(C=3^{10}+3^{11}+3^{12}+...+3^{17}.\)

\(C=\left(3^{10}+3^{11}+3^{12}+3^{13}\right)+\left(3^{14}+3^{15}+3^{16}+3^{17}\right).\)

\(C=3^{10}\left(1+3+3^2+3^3\right)+3^{14}\left(1+3+3^2+3^3\right).\)

\(C=3^{10}\left(1+3+9+27\right)+3^{14}\left(1+3+9+27\right).\)

\(C=3^{10}.40+3^{14}.40.\)

\(C=\left(3^{10}+3^{14}\right).40⋮40\left(đpcm\right).\)

29 tháng 12 2017

\(C=3^{10}+3^{11}+..+3^{17}\\ =\left(3^{10}+3^{11}+3^{12}+3^{13}\right)+\left(3^{14}+..+3^{17}\right)\\ =3^{10}\left(1+3+3^2+3^3\right)+3^{14}\left(1+3+3^2+3^3\right)\\ =40\left(3^{10}+3^{14}\right)⋮40\)

26 tháng 7 2017

1. Bài toán 46

2. Chưa tìm ra

26 tháng 7 2017

cách đó ko hay lắm

Ta có: \(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(=\left(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)

\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}-1-\dfrac{1}{2}-...-\dfrac{1}{25}\)

\(=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)(đpcm)

28 tháng 6 2021

\(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{50}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{25}\right)\)

\(=\dfrac{1}{26}+\dfrac{1}{27}+\dfrac{1}{28}+...+\dfrac{1}{50}\)   (đpcm)

9 tháng 10 2016

Ta biến đổi vế phải :

1-1/2+1/3-1/4+.....+1/49-1/50

=(1+1/3+1/5+....+1/49)-(1/2+1/4+1/6+.......+1/50)

=(1+1/2+1/3+.....+1/49+1/50)-2(1/2+1/4+1/6+......+1/50)

=(1+1/2+...+1/50)-(1+1/2+1/3+....+1/25)

=1/26+1/27+.......+1/50

Vậy 1/26+1/27+1/28+.....+1/50=1-1/2+1/3-1/4+......+1/49-1/50

Mình không bấm phân số được mong mấy bạn thông cảm

 1/26+1/27+1/28+...+1/49+1/50=1-1/2+1/3-1... 
<=>2/26+2/28+2/30+...+2/50=1-1/2+1/3-1... 
<=>1/13+1/14+1/15+...+1/25=1-1/2+1/3-1... 
<=>2/14+2/16+2/18+...2/24=1-1/2+1/3-1/... 
<=>1/7+1/8+1/9+...+1/12=1-1/2+1/3-1/4+... 
<=>2/8+2/10+2/12=1-1/2+1/3-1/4+1/5-1/6 
<=>1/4+1/5+1/6=1-1/2+1/3-1/4+1/5-1/6 
<=>2/4+2/6=1-1/2+1/3 
<=>1/2+1/3=1-1/2+1/3 
<=>2/2=1

 

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\)

=>đpcm