K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2019

1-1/2+1/3-1/4+......-1/1000 

=(1+1/3+1/5+......+1/999)-(1/2+1/4+.......+1/1000) 

=(1+1/2+1/3+1/4+.....+1/1000)-2(1/2+1/4+.......+1/1000) 

=(1+1/2+1/3+.........+1/1000)-(1+1/2+.....+1/500) 

=1/501 +1/502+1/503+.....+1/1000 ; 

mat khác: 

500-500/501-501/502-.....-999/1000 

=(1-500/501)+(1-501/502)+.....+(1-999/1000)=1/501+1/502+....+1/1000  

=>D=1

4 tháng 3 2018

mình cần gấp nhé

12 tháng 10 2021

:)) ko bt làm :))

                                                                                    kí tên

                                                                                   cái nịt

28 tháng 10 2022

reeeeeeeee

 

14 tháng 4 2017

=1/1*2+1/2*3+...+1/999*1000

=1/1-1/2+1/2-1/3+...+1/999-1/1000

=1-1/1000

26 tháng 4 2017

So sánh A và B biết;

A = \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{999}{1000}\)

B = \(\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{998}{999}\)

21 tháng 6 2015

\(\frac{2}{3}+\frac{1}{3}=\frac{6+3}{3}=\frac{9}{3}=3\)

\(\frac{3}{4}+\frac{2}{4}+\frac{1}{4}=\left(\frac{3}{4}+\frac{1}{4}\right)+\frac{1}{2}=1+\frac{1}{2}=1\frac{1}{2}=\frac{3}{2}\)

\(\frac{4}{5}+\frac{3}{5}+\frac{2}{5}+\frac{1}{5}=\left(\frac{4}{5}+\frac{1}{5}\right)+\left(\frac{3}{5}+\frac{2}{5}\right)=2+2=4\)

\(\frac{5}{6}+\frac{4}{6}+\frac{3}{6}+\frac{2}{6}+\frac{1}{6}=\left(\frac{5}{6}+\frac{1}{6}\right)+\left(\frac{4}{6}+\frac{2}{6}\right)+\frac{1}{2}=1+1\)\(+\frac{1}{2}=2\frac{1}{2}=\frac{5}{2}\)

27 tháng 2 2017

ngu  LÊ MĨ LINH

theo thứ tự :1,6/4 =1 và 1/2,2,5/2,500

\(\text{Đề phải như này bạn nha : }B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{999.1000}\)

                                             

7 tháng 7 2016

N Lam theo đề Nguyễn Thiều Công Thành nha  :

\(\Rightarrow B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{999}-\frac{1}{1000}\)

\(\Rightarrow B=1-\frac{1}{1000}=\frac{999}{1000}\)

7 tháng 3 2018

Bạn tham khảo nhé 

\(a)\)Đặt  \(A=\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}\)

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A< 1-\frac{1}{100}=\frac{100-1}{100}=\frac{99}{100}< 1\) ( đpcm ) 

Vậy \(A< 1\)