Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1-1/2+1/3-1/4+......-1/1000
=(1+1/3+1/5+......+1/999)-(1/2+1/4+.......+1/1000)
=(1+1/2+1/3+1/4+.....+1/1000)-2(1/2+1/4+.......+1/1000)
=(1+1/2+1/3+.........+1/1000)-(1+1/2+.....+1/500)
=1/501 +1/502+1/503+.....+1/1000 ;
mat khác:
500-500/501-501/502-.....-999/1000
=(1-500/501)+(1-501/502)+.....+(1-999/1000)=1/501+1/502+....+1/1000
=>D=1
Câu 2 :
\(1\frac{13}{15}.0,75-\left(\frac{104}{195}+25\%\right).\frac{24}{47}-3\frac{12}{13}:3\)
\(\frac{28}{15}.\frac{3}{4}-\left(\frac{104}{195}+\frac{25}{100}\right).\frac{24}{47}-\frac{51}{13}:3\)
\(\frac{28}{15}.\frac{3}{4}-\frac{47}{60}.\frac{24}{47}-\frac{51}{13}:3\)
\(\frac{7}{5}-\frac{2}{5}-\frac{51}{13}.\frac{1}{3}\)
\(\frac{7}{5}-\frac{2}{5}-\frac{17}{13}\)
\(-\frac{4}{13}\)
d,
\(|x-\frac{1}{3}|=\frac{5}{6}\Rightarrow \left[\begin{matrix} x-\frac{1}{3}=\frac{5}{6}\\ x-\frac{1}{3}=-\frac{5}{6}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{7}{6}\\ x=\frac{-1}{2}\end{matrix}\right.\)
e,
\(\frac{3}{4}-2|2x-\frac{2}{3}|=2\)
\(\Leftrightarrow 2|2x-\frac{2}{3}|=\frac{3}{4}-2=\frac{-5}{4}\)
\(\Leftrightarrow |2x-\frac{2}{3}|=-\frac{5}{8}<0\) (vô lý vì trị tuyệt đối của 1 số luôn không âm)
Vậy không tồn tại $x$ thỏa mãn đề bài.
f,
\(\frac{2x-1}{2}=\frac{5+3x}{3}\Leftrightarrow 3(2x-1)=2(5+3x)\)
\(\Leftrightarrow 6x-3=10+6x\)
\(\Leftrightarrow 13=0\) (vô lý)
Vậy không tồn tại $x$ thỏa mãn đề bài.
a,
$0-|x+1|=5$
$|x+1|=0-5=-5<0$ (vô lý do trị tuyệt đối của một số luôn không âm)
Do đó không tồn tại $x$ thỏa mãn điều kiện đề.
b,
\(2-|\frac{3}{4}-x|=\frac{7}{12}\)
\(|\frac{3}{4}-x|=2-\frac{7}{12}=\frac{17}{12}\)
\(\Rightarrow \left[\begin{matrix} \frac{3}{4}-x=\frac{17}{12}\\ \frac{3}{4}-x=\frac{-17}{12}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{-2}{3}\\ x=\frac{13}{6}\end{matrix}\right.\)
c,
\(2|\frac{1}{2}x-\frac{1}{3}|-\frac{3}{2}=\frac{1}{4}\)
\(2|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{4}\)
\(|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{8}\)
\(\Rightarrow \left[\begin{matrix} \frac{1}{2}x-\frac{1}{3}=\frac{7}{8}\\ \frac{1}{2}x-\frac{1}{3}=-\frac{7}{8}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{29}{12}\\ x=\frac{-13}{12}\end{matrix}\right.\)
câu 1b
Gọi d là ƯCLN (3n-7, 2n-5), d thuộc N*
Ta có : 3n-7 chia ht cho d , 2n_5 chia ht cho d
suy ra: 2(3n-7) chia ht cho d , 3(2n-5) chia ht cho d
suy ra 6n-14 chia ht cho d, 6n-15 chia ht cho d
dấu suy ra [(6n -15) - (6n-14)] chia ht cho d dấu suy ra 1 chia ht cho d suy ra d =1
Vậy......
1) b. Để chứng tỏ \(\frac{3n-7}{2n-5}\) là phân số tối giản
Ta cần chứng minh: ( 3n - 7; 2n - 5 ) = 1
Thật vậy: ( 3n - 7 ; 2n - 5 ) = ( 2n - 5 ; ( 3n - 7 ) - ( 2n - 5 ) ) = ( 2n - 5; n - 2 ) = ( n - 2; n - 3 ) = ( n - 2; 1 ) = 1
=> \(\frac{3n-7}{2n-5}\) là phân số tối giản
3) \(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{12}\)
Ta có: \(\frac{1}{3}+\frac{1}{4}=\frac{7}{12}>\frac{6}{12}=\frac{1}{2}\)
\(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}=\left(\frac{1}{5}+\frac{1}{7}\right)+\frac{1}{6}=\frac{12}{35}+\frac{1}{6}>\frac{12}{36}+\frac{1}{6}=\frac{2}{6}+\frac{1}{6}=\frac{1}{2}\)
\(\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}=\left(\frac{1}{8}+\frac{1}{9}+\frac{1}{10}\right)+\left(\frac{1}{11}+\frac{1}{12}\right)>\frac{1}{3}+\frac{1}{6}=\frac{1}{2} \)
=> A > 1/2 + 1/2 + 1/2 + 1/2 = 2