Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2/ Áp dụng BĐT Bunhiacopxki \(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)
\(\Leftrightarrow a^2x^2+b^2y^2+2abxy\le a^2x^2+a^2y^2+b^2x^2+b^2y^2\)
\(\Leftrightarrow bx^2+ay^2-2abxy\ge0\)
\(\Leftrightarrow\left(bx-ay\right)^2\ge0\)(đúng) Dấu "=" xảy ra khi x/a=y/b
Ta có: \(\left(x+4y\right)^2\le\left(1^2+2^2\right)\left(x^2+4y^2\right)=5\left(x^2+4y^2\right)\)
Mà a + 4b = 1
\(\Rightarrow x^2+4y^2\ge\frac{1}{5}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{1}{x}=\frac{2}{2y}=\frac{1}{y}\\x+4y=1\end{cases}}\Rightarrow x=y=\frac{1}{5}\)
Áp dụng BĐT bunhiacopxki
\(\left(1+2^2\right)\left(x^2+4y^4\right)\ge\left(x+4y\right)^2\)
<=> \(5\left(x^2+4y^2\right)\ge1\)
<=> \(x^2+4y^2\ge\dfrac{1}{5}\) (đpcm)
dấu '=' xảy ra khi x=\(\dfrac{y}{4}\) => x=\(\dfrac{13}{17}\) ;y=\(\dfrac{4}{17}\)
Bunyakovsky k được biết vs dạng đó.Ít nhất cũng phải viết 1^2 chứ
vì x+4y=1 nên x=1-4y (1)
ta có : x^2+4y^2≥1/5
=> x^2+4y^2-1/5 ≥0 (2)
thay (1) vào (2) ta có:(1-4y)^2+4y^2-1/5 ≥ 0
<=>1-8y +16y^2 + 4y^2 - 1/5 ≥ 0
<=>20y^2 - 8y + 4/5 ≥ 0
<=>5(4y^2 - 8/5y + 4/25) ≥ 0
<=>5(2y-8/20)^2 ≥ 0 (luôn đúng)
Vậy với x+4y=1 thì x^2+4y^2≥1/5 ;dấu = xảy ra khi x=y=1/5
vì x+4y=1 nên x=1-4y (1)
ta có : x^2+4y^2≥1/5
=> x^2+4y^2-1/5 ≥0 (2)
thay (1) vào (2) ta có:(1-4y)^2+4y^2-1/5 ≥ 0
<=>1-8y +16y^2 + 4y^2 - 1/5 ≥ 0
<=>20y^2 - 8y + 4/5 ≥ 0
<=>5(4y^2 - 8/5y + 4/25) ≥ 0
<=>5(2y-8/20)^2 ≥ 0 (luôn đúng)
Vậy với x+4y=1 thì x^2+4y^2≥1/5 ;dấu = xảy ra khi x=y=1/5
x^5+y^5 >= x^4y+xy^4
<=>x^5+y^5-x^4y-xy^4 >= 0
<=>x^4(x-y)-y^4(x-y) >= 0
<=>(x-y)(x^4-y^4) >= 0
<=>(x-y)(x^2-y^2)(x^2+y^2) >= 0
<=>(x-y)^2(x+y)(x^2+y^2) >= 0 (luôn đúng do x+y >= 0)
Vậy bđt đầu là đúng
tìm trc khi hỏi Câu hỏi của Nguyễn Thúy Hường - Toán lớp 8 - Học toán với OnlineMath
Ta có: \(x+4y=1\)
nên x=1-4y
Ta có: \(x^2+4y^2\ge\dfrac{1}{5}\)
\(\Leftrightarrow\left(1-4y\right)^2+4y^2-\dfrac{1}{5}\ge0\)
\(\Leftrightarrow16y^2-8y+1+4y^2-\dfrac{1}{5}\ge0\)
\(\Leftrightarrow20y^2-8y+\dfrac{4}{5}\ge0\)
\(\Leftrightarrow5\left(2y-\dfrac{8}{20}\right)^2\ge0\)(luôn đúng)
Trả lời hộ mình nha máy mình lag k ấn được bình phương sorry các bạn nhé