K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2020

a. \(9x^2+25-12xy+5y^2-10y\)

\(=\left(9x^2-12xy+4y^2\right)+\left(25+y^2-10y\right)\)

\(=9\left(x^2-\frac{4xy}{3}+\frac{4y^2}{9}\right)+\left(5-y\right)^2\)

\(=9\left(x-\frac{2y}{3}\right)^2+\left(5-y\right)^2\)

20 tháng 8 2020

a) 9x2 + 25 - 12xy + 5y2 - 10y

= ( 9x2 - 12xy + 4y2 ) + ( y2 - 10y + 25 )

= ( 3x - 2y )2 + ( y - 5 )2

b) 13x2 + 4x + 12xy + 4y2 + 1

= ( 9x2 + 12xy + 4y2 ) + ( 4x2 + 4x + 1 )

= ( 3x + 2y )2 + ( 2x + 1 )2

c) x2 + 20 + 9y2 + 8x - 12y

= ( x2 + 8x + 16 ) + ( 9y2 - 12y + 4 )

= ( x + 4 )2 + ( 3y - 2 )2

20 tháng 8 2020

2. 

a. \(x^2-6x+5=0\)

\(\Leftrightarrow\left(x^2-x\right)-\left(5x-5\right)=0\)

\(\Leftrightarrow x\left(x-1\right)-5\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\x=1\end{cases}}\)

b. \(x^2-2x-24=0\)

\(\Leftrightarrow\left(x^2-6x\right)+\left(4x-24\right)=0\)

\(\Leftrightarrow x\left(x-6\right)+4\left(x-6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+4=0\\x-6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-4\\x=6\end{cases}}\)

29 tháng 6 2019

a/ 9x2-12xy+4y2 = (3x - 2y)2

b/ 25x2-10x+1 = (5x - 1)2

c/ 9x2-12x+4 = (3x - 2)2

d/ 4x2+20x+25 = (2x + 5)2

e/ x4-4x2+4 = (x- 2)2

29 tháng 6 2019

a/\(\left(3x-2y\right)^2\)

b/\(\left(5x-1\right)^2\)

c/\(\left(3x-2\right)^2\)

d/\(\left(2x+5\right)^2\)

e/\(\left(x-2\right)^2\)

22 tháng 6 2017

a, \(4x^2-4x+1=\left(2x-1\right)^2\)

b, \(x^2+4xy+4y^2=\left(x+2y\right)^2\)

c, \(4x^2+4xy+y^2=\left(2x+y\right)^2\)

d, \(x^2+12xy+36y^2=\left(x+6y\right)^2\)

e, \(x^2-12xy+36y^2=\left(x-6y\right)^2\)

23 tháng 6 2017

a, \(4x^2-4x+1\)

\(=4x^2-2x-2x+1=2x.\left(2x-1\right)-\left(2x-1\right)\)

\(=\left(2x-1\right)^2\)

b, \(x^2+4xy+4y^2\)

\(=x^2+2xy+2xy+4y^2\)

\(=x.\left(x+2y\right)+2y.\left(x+2y\right)\)

\(=\left(x+2y\right)^2\)

Chúc bạn học tốt!!! (bạn nhờ mình giải chi tiết bài này á)

20 tháng 8 2020

Bài 2: Tìm x

a) x2 - 6x + 5 = 0

<=> x2 - x - 5x + 5 = 0

<=> x(x - 1) - 5(x - 1) = 0

<=> (x - 1)(x - 5) = 0

<=> \(\left[{}\begin{matrix}x-1=0\\x-5=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)

Vậy x ={1; 5}

b) x2 - 2x - 24 = 0

<=> x2 + 4x - 6x - 24 = 0

<=> x(x + 4) - 6(x + 4) = 0

<=> (x + 4)(x - 6) = 0

<=> \(\left[{}\begin{matrix}x+4=0\\x-6=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=-4\\x=6\end{matrix}\right.\)

Vậy x ={-4; 6}

24 tháng 9 2021

a. x2 + 6x + 9 = (x + 3)2

b. 25 + 10x + x2 = (5 + x)2

c. x2 + 8x + 16 = (x + 4)2

d. x2 + 14x + 49 = (x + 7)2

e. 4x2 + 12x + 9 = (2x + 3)2

f. 9x2 + 12x + 4 = (3x + 2)2

h. 16x2 + 8 + 1 = (4x + 1)2

i. 4x2 + 12xy + 9y2 = (2x + 3y)2

k. 25x2 + 20xy + 4y2 = (5x + 2y)2

24 tháng 9 2021

a) \(=\left(x+3\right)^2\)

b) \(=\left(x+5\right)^2\)

c) \(=\left(x+4\right)^2\)

d) \(=\left(x+7\right)^2\)

e) \(=\left(2x+3\right)^2\)

f) \(=\left(3x+2\right)^2\)

h) \(=\left(4x+1\right)^2\)

i) \(=\left(2x+3y\right)^2\)

k) \(=\left(5x+2y\right)^2\)