Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu n là hợp số thì n có dạng \(pk\) với p,k là các số nguyên dương
Khi đó:\(2^n-1=2^{pk}-1=\left(2^p\right)^k-1⋮2^p-1\)
Như vậy ta có đpcm
Đặt n=a^2+b^2
Khi đó n^2=(a^2+b^2)^2−4a^2b^2+4a^2b^2=(a^2−2ab+b^2)(a^2+2ab+b^2)+(2ab)^2=[(a+b)(a−b)]^2+(2ab)^2
b)
đặt A= 1+2^1+2^2+.....+2^(n-1) (1) (điều kiện: n là hợp số)
=>2A =2.[1+2^1+2^2+.....+2^(n-1)]
=>2A=2^1+2^2+.....+2^(n-1) +2^n (2)
lấy (2) - (1) vế theo vế ta có:
2A-A= 2^n -1
=> A= 2^n -1
=> 2^n -1 = 1+2^1+2^2+.....+2^(n-1)
vì n là hợp số =>n=a.b ( a,b thuộc N ; a >1; b>1)
=> 1+2^1+2^2+.....+2^(n-1) =1+2^1+2^2+.....+2^(a.b-1)
trong tổng 1+2^1+2^2+.....+2^(a.b-1) có (a.b-1-0) :1+1 =a.b số hạng
=> tổng 1+2^1+2^2+.....+2^(a.b-1) có thể chia thành b nhóm ; hoặc a nhóm
=>1+2^1+2^2+.....+2^(a.b-1) chia hết cho a và chia hết cho b mà a,b thuộc N ; a >1; b>1
=>1+2^1+2^2+.....+2^(a.b-1) là hợp số => 2^n - 1 cũng là hợp số
\(A=n^3+n+2=n\left(n^2+1\right)+2\)
Trường hợp 1: n=2k
=>\(A=2\left[k\left(n^2+1\right)+1\right]⋮2\)
Trường hợp 2: n=2k+1
\(A=\left(2k+1\right)\left(4k^2+4k+1+1\right)+2\)
\(=2\left(2k+1\right)\left(2k^2+2k+1\right)+2⋮2\)
Vậy: với mọi số nguyên dương n thì A là hợp số