Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=11...1\left(2n\right);B=11...1\left(n+1\right);C=66...6\left(n\right)\)
\(\Rightarrow A+B+C+8=11...1\left(2n\right)+11...1\left(n+1\right)+66...6\left(n\right)+8\)
\(=11...1\left(n\right).10^n+11...1\left(n\right)+11...1\left(n\right).10+1+6.11...1\left(n\right)+8\)
\(=11...1\left(n\right).10^n+17.11...1\left(n\right)+9\)
Đặt\(11...1\left(n\right)=a\)
\(\Rightarrow10^n=9a+1\)
\(\Rightarrow A+B+C+8=a\left(9a+1\right)+17a+9\)
\(=9a^2+18a+9a=\left(3a+3\right)^2\)
Thay \(a=11...1\left(n\right)\Rightarrow A+B+C+8=\left(3.11...1\left(n\right)+3\right)^2\)
Chú thích: n;n+1;2n là số chữ số
Ta có:
a+b+c+8
=111...1(2n c/s 1)+111...1(n+1 c/s1)+666...6(n chữ số 6)+8
=111...1(n-1 c/s 1)2888...8(n c/s 8)+8
=111...1(n-1 c/s 1)2888..8(n-2 c/s 8)96
Ta thấy:
362(1c/s3)=1296(1 c/s 1;0 c/s 8)
3362(2c/s 3)=112896(2 c/s 1;1c/s 8)
33362(3c/s 3)=11128896(3 c/s 1;2 c/s 8)
=>333...362(n-1 c/s 3)=111...1(n-1 c/s 1)2888..8(n-2 c/s 8)96
=>a+b+c+8 là số chính phương(ĐPCM)
a = 11....11 ( 2n chữ số 1 ) ; b = 1...1 ( n + 1 chữ số 1 ) ; c = 6....6 ( n chữ số 6 )
đặt 11...11 ( n chữ số 1 ) = x \(\Rightarrow\)99...9 ( n chữ số 9 ) = 9x \(\Rightarrow\)10n = 9x + 1
a + b + c + 8 = ( 11....1 . 10n + 11....1 ) + 11..11 + 66...6 + 8
= ( x . ( 9x + 1 ) + x ) + 10x + 1 + 6x + 8
= 9x2 + 18x + 9 = ( 3x + 3 )2 là số chính phương
a=11...1:2n số 1 nên a=(10^2n - 1)/9
b=11...1:n+1 số 1 nên b=[10^(n+1) - 1]/9
c=66...6:n số 6 nên c=6*(10^n -1)/9
a+b+c+8=(10^2n - 1)/9 + [10^(n+1) - 1]/9 + 6*(10^n -1)/9 +72/9
=(10^2n - 1 + 10*10n -1 +6*10^n - 6 + 72)/9
=[ (10^n)^2 + 2*10^n(5+3) +64]/9
=[ (10^n)^2 + 2*8*10^n + 8^2]/9
= (10^n + 8 )^2/9
= [(10^n + 8 )/3]^2
vì 10^n +8=100...0 +8:tổng các chữ số chia hết cho 3 nên (10^n + 8 )/3 là 1 số nguyên =>[(10^n + 8 )/3]^2 là số chính phương
b)
đặt A= 1+2^1+2^2+.....+2^(n-1) (1) (điều kiện: n là hợp số)
=>2A =2.[1+2^1+2^2+.....+2^(n-1)]
=>2A=2^1+2^2+.....+2^(n-1) +2^n (2)
lấy (2) - (1) vế theo vế ta có:
2A-A= 2^n -1
=> A= 2^n -1
=> 2^n -1 = 1+2^1+2^2+.....+2^(n-1)
vì n là hợp số =>n=a.b ( a,b thuộc N ; a >1; b>1)
=> 1+2^1+2^2+.....+2^(n-1) =1+2^1+2^2+.....+2^(a.b-1)
trong tổng 1+2^1+2^2+.....+2^(a.b-1) có (a.b-1-0) :1+1 =a.b số hạng
=> tổng 1+2^1+2^2+.....+2^(a.b-1) có thể chia thành b nhóm ; hoặc a nhóm
=>1+2^1+2^2+.....+2^(a.b-1) chia hết cho a và chia hết cho b mà a,b thuộc N ; a >1; b>1
=>1+2^1+2^2+.....+2^(a.b-1) là hợp số => 2^n - 1 cũng là hợp số