Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(xy+\frac{1}{xy}\right)^2-\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)\left(xy+\frac{1}{xy}\right)\)
\(=\left(xy+\frac{1}{xy}\right)\left[\left(xy+\frac{1}{xy}\right)-\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)\right]\)
\(=\left(xy+\frac{1}{xy}\right)\left(xy+\frac{1}{xy}-xy-\frac{x}{y}-\frac{y}{x}-\frac{1}{xy}\right)\)
\(=\left(xy+\frac{1}{xy}\right)\left(-\frac{x}{y}-\frac{y}{x}\right)\)
\(=-\left(xy+\frac{1}{xy}\right)\left(\frac{x}{y}+\frac{y}{x}\right)=-\left(x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}\right)\)
\(-\left(x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}\right)+\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(=4\)
Vậy giá trị bt ko phụ thuộc vào biến
bn có thể giải thích rõ hơn tại sao lại bằng 4 được không? Dù gì thì cx cảm ơn bn đã tl câu hỏi của mk
\(=\frac{y}{x-y}-\frac{x\left(x^2-y^2\right)}{x^2+y^2}.\left[\frac{x}{\left(x-y\right)^2}-\frac{y}{\left(x-y\right)\left(x+y\right)}\right]\)
\(=\frac{y}{x-y}-\frac{x\left(x-y\right)\left(x+y\right)}{x^2+y^2}.\left[\frac{x\left(x +y\right)-y\left(x-y\right)}{\left(x-y\right)^2\left(x+y\right)}\right]\)
\(=\frac{y}{x-y}-\frac{x\left(x-y\right)\left(x+y\right)}{x^2+y^2}.\frac{x^2+xy-xy+y^2}{\left(x-y\right)^2\left(x+y\right)}\)
\(=\frac{y}{x-y}-\frac{x\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)}{\left(x^2+y^2\right)\left(x-y\right)^2\left(x+y\right)}\)
\(=\frac{y}{x-y}-\frac{x}{x-y}=\frac{y-x}{x-y}=\frac{-\left(x-y\right)}{x-y}=-1\)
Vậy giá trị của biểu thức không phụ thuộc vào biến x và y
Giao luu:
\(a=\left(\frac{x}{\left(x-y\right)^2}-\frac{y}{x^2-y^2}\right)=\left(\frac{x\left(x+y\right)-y\left(x-y\right)}{\left(x-y\right)^2\left(x+y\right)}\right)=\left(\frac{x^2+y^2}{\left(x-y\right)^2\left(x+y\right)}\right)\)
\(b=\frac{x^3-xy^2}{\left(x^2+y^2\right)}=\frac{x\left(x^2-y^2\right)}{x^2+y^2}=\frac{x\left(x-y\right)\left(x+y\right)}{x^2+y^2}\)
\(c=\frac{y}{x-y}\)
\(P=c-ab\)
Điều kiện tồn tại P: \(!x!-!y!\ne0\)
\(P=\frac{y}{x-y}-\frac{x}{x-y}=\frac{y-x}{x-y}=-\frac{x-y}{x-y}=-1\)
Bài 1:
\(\left(x-y+z\right)^2+\left(z-y\right)^2+\left(x-y+z\right)\left(2y-2z\right)\)
\(=\left(x-y+z\right)^2+2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2\)
\(=\left(x-y+z+y-z\right)^2\)
\(=x^2\)
Bài 2:
đk: \(x\ne\left\{0;-1;-2;-3;-4;-5\right\}\)
Xét BT trái ta có:
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+4\right)\left(x+5\right)}\)
\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+4}-\frac{1}{x+5}\)
\(=\frac{1}{x}-\frac{1}{x+5}\)
\(=\frac{5}{x\left(x+5\right)}=\frac{5}{x^2+5x}\)
GT của biểu thức lớn sẽ là: \(\frac{5}{x^2+5x}\cdot\frac{x^2+5x}{5}=1\) không phụ thuộc vào biến
=> đpcm
Bài 1.
( x - y + z ) + ( z - y )2 + ( x - y + z )( 2y - 2z )
= ( x - y + z ) - 2( x - y + z )( z - y ) + ( z - y )2
= [ ( x - y + z ) - ( z - y ) ]2
= ( x - y + z - z + y )2
= x2
Bài 2. ĐKXĐ tự ghi nhé :))
\(\left(\frac{1}{x^2+x}+\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}\right)\times\left(\frac{x^2+5x}{5}\right)\)
\(=\left(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}\right)\times\left(\frac{x\left(x+5\right)}{5}\right)\)
\(=\left(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+4}-\frac{1}{x+5}\right)\times\left(\frac{x\left(x+5\right)}{5}\right)\)
\(=\left(\frac{1}{x}-\frac{1}{x+5}\right)\times\frac{x\left(x+5\right)}{5}\)
\(=\left(\frac{x+5}{x\left(x+5\right)}-\frac{x}{\left(x+5\right)}\right)\times\frac{x\left(x+5\right)}{5}\)
\(=\frac{x+5-x}{x\left(x+5\right)}\times\frac{x\left(x+5\right)}{5}\)
\(=\frac{5}{x\left(x+5\right)}\times\frac{x\left(x+5\right)}{5}=1\)
=> đpcm