K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2016

Đặt \(x=1+\frac{\sqrt{3}}{2}=\left(\frac{\sqrt{3}+1}{2}\right)^2\) , \(y=1-\frac{\sqrt{3}}{2}=\left(\frac{\sqrt{3}-1}{2}\right)^2\) \(\Rightarrow\begin{cases}x+y=2\\xy=\frac{1}{4}\end{cases}\)

Ta có vế trái : \(\frac{x}{1+\sqrt{x}}+\frac{y}{1-\sqrt{y}}=\frac{x-x\sqrt{y}+y+y\sqrt{x}}{\left(1+\sqrt{x}\right)\left(1-\sqrt{y}\right)}=\frac{\left(x+y\right)-\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\left(1+\sqrt{x}\right)\left(1+\sqrt{y}\right)}\)

Xét tử số : \(\left(x+y\right)-\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)=2-\frac{1}{2}\left(\frac{\sqrt{3}+1}{2}-\frac{\sqrt{3}-1}{2}\right)=\frac{3}{2}\)

Xét mẫu số : \(\left(1+\sqrt{x}\right)\left(1-\sqrt{y}\right)=\left(1+\frac{\sqrt{3}+1}{2}\right)\left(1-\frac{\sqrt{3}-1}{2}\right)=\left(1+\frac{1}{2}\right)^2-\left(\frac{\sqrt{3}}{2}\right)^2=\frac{3}{2}\)

Vậy : \(\frac{x}{1+\sqrt{x}}+\frac{y}{1-\sqrt{y}}=\frac{\frac{3}{2}}{\frac{3}{2}}=1\) hay \(\frac{1+\frac{\sqrt{3}}{2}}{1+\sqrt{1+\frac{\sqrt{3}}{2}}}+\frac{1-\frac{\sqrt{3}}{2}}{1-\sqrt{1-\frac{\sqrt{3}}{2}}}=1\) (đpcm)

 

17 tháng 9 2018

Đặt \(\hept{\begin{cases}\sqrt{1+\frac{\sqrt{3}}{2}}=a\\\sqrt{1-\frac{\sqrt{3}}{2}}=b\end{cases}}\)

\(\Rightarrow a^2+b^2=2;ab=\frac{1}{2};a-b=1\)

\(\Rightarrow\frac{1+\frac{\sqrt{3}}{2}}{1+\sqrt{1+\frac{\sqrt{3}}{2}}}+\frac{1-\frac{\sqrt{3}}{2}}{1-\sqrt{1-\frac{\sqrt{3}}{2}}}=\frac{a^2}{1+a}+\frac{b^2}{1-b}\)

\(=\frac{a^2+b^2-ab\left(a-b\right)}{1-ab+\left(a-b\right)}=\frac{2-\frac{1}{2}.1}{1-\frac{1}{2}+1}=1\)

5 tháng 8 2016

ta tính VT ra xong rồi nói VT = VP

17 tháng 8 2015

a)\(\frac{3.\sqrt{6}}{2}+\frac{2.\sqrt{2}}{\sqrt{3}}-\frac{4.\sqrt{3}}{\sqrt{2}}=\frac{3\sqrt{6}}{2}+\frac{2\sqrt{2}.\sqrt{3}}{\sqrt{3}.\sqrt{3}}-\frac{4.\sqrt{3}.\sqrt{2}}{\sqrt{2}.\sqrt{2}}=\frac{3\sqrt{6}}{2}+\frac{2\sqrt{6}}{3}-\frac{4\sqrt{6}}{2}=\frac{2\sqrt{6}}{3}-\frac{\sqrt{6}}{2}=\frac{4\sqrt{6}-3\sqrt{6}}{6}=\frac{\sqrt{6}}{6}\)

--> dpcm

b) \(\left(\frac{-\sqrt{7}.\left(1-\sqrt{2}\right)}{1-\sqrt{2}}+\frac{-\sqrt{5}.\left(1-\sqrt{3}\right)}{1-\sqrt{3}}\right).\frac{\sqrt{7}-\sqrt{5}}{1}\)

=\(\left(-\sqrt{7}-\sqrt{5}\right).\left(\sqrt{7}-\sqrt{5}\right)\)

=\(-1.\left(\sqrt{7}+\sqrt{5}\right).\left(\sqrt{7}-\sqrt{5}\right)\)

=\(-1.\left(7-5\right)\)

=-1.2

=-2