Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1 a, a^3 - a = a.(a^2-1) = (a-1).a.(a+1) chia hết cho 3
b, a^7-a = a.(a^6-1) = a.(a^3-1).(a^3+1)
Ta thấy số lập phương khi chia 7 dư 0 hoặc 1 hoặc 6
+Nếu a^3 chia hết cho 7 => a^7-a chia hết cho 7
+Nếu a^3 chia 7 dư 1 thì a^3-1 chia hết cho 7 => a^7-a chia hết cho 7
+Nếu a^3 chia 7 dư 6 => a^3+1 chia hết cho 7 => a^7-a chia hết cho 7
Vậy a^7-a chia hết cho 7
b, a^7-a=a(a^6-1)
=a(a^3+1)(a^3-1)
=a(a+1)(a^2-a+1)(a-1)(a^2+a+1)
=a(a-1)(a+1)(a^2-a+1)(a^2+a+1)
=a(a-1) (a+1) (a^2-a+1-7) (a^2+a+1)
+7a (a-1) (a+1) (a^2+a-1)
=a (a-1) (a+1) (a^2-a-6) (a^2+a+1-7)
+7a (a-1) (a+1) (a^2+a-1)
+7a (a-1) (a+1) (a^2-a-6)
có: 7a(a-1) (a+1) (a^2+a-1)+7a (a-1) (a+1) (a^2-a-6) chia hết cho 7 (cùng có nhân tử 7)
ta cần chứng minh: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7) chia hết cho 7
thật vậy: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7)
=a(a-1) (a+1) [(a+2)(a-3)] [(a-2)(a+3)]
=(a-3) (a-2) (a-1) a (a+1) (a+2) (a+3) là tích của 7 số nguyên liên tiếp nên chia hết cho 7.
trong 7 số tự nhiên liên tiếp có 1 số chia hết cho 7,1 số dư 1,1 số dư 2,....và 1 số dư 6 khi chia cho 7
\(M=1+7+7^1+7^2+...+7^{101}\)
\(=\left(1+7\right)+7\left(1+7\right)+...+7^{100}\left(1+7\right)\)
\(=8\cdot\left(1+7+...+7^{100}\right)⋮8\)
Nguyễn Ngọc Quý sai ...= 7^6. ( 7-1+49)= 7^6.55 chia hết cho 11
a) \(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.\left(49+7-1\right)=7^4.55\)
Ta có: 55 chia hết cho 11
Nên \(7^4.55\)chia hết cho 11
Hay \(7^6+7^5-7^4\)chia hết cho 11
Câu b,c làm tương tự
\(B=7+7^2+...+7^{100}\)
\(B=\left(7+7^2\right)+...+\left(7^{99}+7^{100}\right)\)
\(B=7\left(1+7\right)+...+7^{99}\left(1+7\right)\)
\(B=7\cdot8+...+7^{99}\cdot8\)
\(B=8\cdot\left(7+...+7^{99}\right)⋮8\left(đpcm\right)\)
\(B=7+7^2+7^3+...+7^{100}\)
\(B=\left(7+7^2+7^3\right)+...+\left(7^{98}+7^{99}+7^{100}\right)\)
\(B=399\cdot1+...+7^{97}\cdot\left(7+7^2+7^3\right)\)
\(B=399\cdot1+...+7^{97}\cdot399\)
\(B=399\cdot\left(1+...+7^{97}\right)⋮399\left(đpcm\right)\)