Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=1+2+2^2+2^3+...+2^{99}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{100}\)
\(\Rightarrow A=2A-A=2+2^2+...+2^{100}-1-2-2^2-...-2^{99}=2^{100}-1\)
b) \(A=1+2+2^2+...+2^{99}=\left(1+2+2^2+2^3\right)+2^4\left(1+2+2^2+2^3\right)+...+2^{96}\left(1+2+2^2+2^3\right)\)
\(=15+2^4.15+...+2^{96}.15=15\left(1+2^4+...+2^{96}\right)\)
\(=3.5\left(1+2^4+...2^{96}\right)\) chia hết cho 3 và 5
c) \(A=1+2+2^2+...+2^{99}\)
\(=1+2\left(1+2+2^2\right)+...+2^{97}\left(1+2+2^2\right)\)
\(=1+2.7+...+2^{97}.7=1+7\left(2+...+2^{97}\right)\) chia 7 dư 1
=> A không chia hết cho 7
a) \(A=2+2^2+...+2^{120}\)
\(\Rightarrow2A=2^2+2^3+...+2^{121}\)
\(\Leftrightarrow2A-A=\left(2^2+2^3+...+2^{121}\right)-\left(2+2^2+...+2^{120}\right)\)
\(\Rightarrow A=2^{121}-2\)
b) Mk làm mẫu 1 phần thôi nhé bn:
\(A=2+2^2+...+2^{120}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{119}+2^{120}\right)\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{119}\left(1+2\right)\)
\(A=3\left(2+2^3+...+2^{119}\right)\) chia hết cho 3
Tương tự xét chia hết cho 7 thì nhóm 3 số, cho 15 thì 4 số nhé
Giải:
a) \(A=1+2+2^2+2^3+...+2^{2021}\)
\(2A=2+2^2+2^3+2^4+...+2^{2022}\)
\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2022}\right)-\left(1+2+2^2+2^3+...+2^{2021}\right)\)
\(A=2^{2022}-1\)
Vì \(2^{2022}>2^{2021}\) nên \(A>2^{2021}\)
b) Từ câu (a), ta có:
\(A=2^{2022}-1\)
\(A=2^{2020}.2^2-1\)
\(A=\left(2^4\right)^{505}.4-1\)
\(A=16^{505}.4-1\)
\(A=\left(\overline{...6}\right)^{505}.4-1\)
\(A=\overline{...6}.4-1\)
\(A=\overline{...4}-1\)
\(A=\overline{...3}\)
Vậy chữ số tận cùng của A là 3
c) Ta có:
\(A=1+2+2^2+2^3+...+2^{2021}\)
\(A=1.\left(1+2\right)+2^2.\left(1+2\right)+...+2^{2020}.\left(1+2\right)\)
\(A=1.3+2^2.3+...+2^{2020}.3\)
\(A=3.\left(1+2^2+...+2^{2020}\right)⋮3\)
Vậy \(A⋮3\left(đpcm\right)\)
d) Ta có:
\(A=1+2+2^2+2^3+...+2^{2021}\)
\(A=1.\left(1+2+2^2\right)+2^3.\left(1+2+2^2\right)+...+2^{2019}.\left(1+2+2^2\right)\)
\(A=1.7+2^3.7+...+2^{2019}.7\)
\(A=7.\left(1+2^3+...+2^{2019}\right)⋮7\)
Vậy \(A⋮7\left(đpcm\right)\)
Chúc bạn học tốt!
a) \(A=7+7^2+...+7^{99}\)
\(7A=7^2+7^3+...+7^{100}\)
\(7A-A=7^2+7^3+...+7^{100}-7-7^2-...-7^{99}\)
\(6A=7^{100}-7\)
\(A=\frac{7^{100}-7}{6}\)
Mà 7100 > 7100 - 7 => A < \(\frac{7^{100}}{6}\)
b) \(A=7+7^2+...+7^{99}\)
\(A=\left(7+7^2+7^3\right)+...+\left(7^{97}+7^{98}+7^{99}\right)\)
\(A=\left(7+7^2+7^3\right)+...+7^{96}.\left(7+7^2+7^3\right)\)
\(A=399+...+7^{96}.399\)
\(A=399.\left(1+...+7^{96}\right)⋮19\left(đpcm\right)\)
\(B=7+7^2+...+7^{100}\)
\(B=\left(7+7^2\right)+...+\left(7^{99}+7^{100}\right)\)
\(B=7\left(1+7\right)+...+7^{99}\left(1+7\right)\)
\(B=7\cdot8+...+7^{99}\cdot8\)
\(B=8\cdot\left(7+...+7^{99}\right)⋮8\left(đpcm\right)\)
\(B=7+7^2+7^3+...+7^{100}\)
\(B=\left(7+7^2+7^3\right)+...+\left(7^{98}+7^{99}+7^{100}\right)\)
\(B=399\cdot1+...+7^{97}\cdot\left(7+7^2+7^3\right)\)
\(B=399\cdot1+...+7^{97}\cdot399\)
\(B=399\cdot\left(1+...+7^{97}\right)⋮399\left(đpcm\right)\)
A = (1+3+ 32 + 33) + (34 + 35 + 36 + 37) + ...+ (396 + 397 + 398 + 399) (Có 100 số nên có 25 nhóm, mỗi nhóm có 4 số )
A = 40. 1 + 34.(1 + 3 + 32 + 33) +...+ 396.(1 + 3 + 32 + 33) = 40.1 + 40.34 + ...+ 40.396 = 40.( 1+ 34 + ... + 396)
=> A chia hết cho 4 và chia hết cho 40
D = (2 + 22 + 23 + 24 ) + (25 + 26 + 27 + 28) + ...+ (297 + 298 + 299 + 2100)
D = 30 .1 + 25. (2 + 22 + 23 + 24 ) + ... + 297. (2 + 22 + 23 + 24 )
D = 30.1 + 30.25 + ...+ 30.297 = 30. (1 + 25 + ...+ 297)
=> D chia hết cho 30 nên chia hết cho 15 và D có tận cùng là 0
2) 540 = (54)10 = 62510 > 62010 => 540 > 62010
1030 = (103)10 = 100010 < 102410 = (210)10 = 2100
333444 = (3334)111 = (34.1114)111 = 81111.111444
444333 = (4443)111 = (43.1113)111 = 64111.111333 < 81111.111444
=> 333444 > 444333