K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2015

ban vo chtt la lam duoc

tick mjnh nha ban dien

15 tháng 11 2016

CM A chia hết cho 7 và 11. Nếu bạn đã biết qua về lý thuyết đồng dư thì có thể giải thế này: 
* 36 mod 7 = 1 nên 36^38 mod 7 = 1; 41 mod 7 = -1 nên 41^33 mod 7 = (-1)^33 = -1 
suy ra A mod 7 = 0 hay A chia hết cho 7. 
* 36 mod 11 = 3, 41 mod 11 =-3 nên A mod 11 = 3^ 38 - 3^33 =3^33 (3^5 - 1) =3^33. 242 
Vì 242 chia hết cho 11 nên A mod 11 = 0. 
Vậy A chia hết cho 7.11 =77

15 tháng 11 2016

aaaaa

a

a

a

a

a

a

a

a

a

a

aaaaaa

31 tháng 3 2016

7755có tận cùng là 3

336có tận cùng là 9

nên 336+775-2 có tận cùng là 3+9-2=...0 chia hết cho 5

19 tháng 8 2016

\(=36^{33+5}+41^{33}=60466176\cdot36^{33}+41^{33}\)\(=60466175\cdot36^{33}+36^{33}+41^{33}\)

\(=60466175\cdot36^{33}+\left(36+41\right)\left(36^{32}-36^{31}\cdot41+...-41^{32}\right)\)

\(=77\cdot785275\cdot36^{33}+77\cdot M\)chia hết cho 77

3) (57 - 56 +55) = 55.(52-5+1)= 55.21 \(⋮\) 21

4) 76+75-74= 74.(72+7-1)=74.55=73.7.11.4=73.4.77 \(⋮\) 77

15 tháng 7 2016

3) \(5^7-5^6+5^5=5^5.\left(5^2-5+1\right)=5^5.21⋮21\)

4) \(7^6+7^5-7^4=7^3.\left(7^3+7^2-7\right)=7^3.385=7^3.77.5⋮77\)

AH
Akai Haruma
Giáo viên
29 tháng 3 2020

Lời giải:

Ký hiệu $\text{BSn}$ là bội số của số $n$

CM $A\vdots 7$

Ta có:

$36^{38}-1=(35+1)^38}-1=\text{BS35}+1-1=\text{BS35}=\text{BS7}\vdots 7$

$41^{43}+1=(42-1)^{43}+1=\text{BS42}-1+1=\text{BS42}=\text{BS7}\vdots 7$

Cộng theo vế:

$A=36^{38}+41^{43}\vdots 7(*)$

CM $A\vdots 11$

\(36^{38}-3^{38}=(33+3)^{38}-3^{38}=\text{BS33}+3^{38}-3^{38}=\text{BS33}=\text{BS11}\vdots 11\)

\(41^{43}+3^{43}=(44-3)^{43}+3^{43}=\text{BS44}-3^{43}+3^{43}=\text{BS44}=\text{BS11}\vdots 11\)

Cộng theo vế:

\(A+3^{43}-3^{38}\vdots 11\)

\(\Leftrightarrow A+3^{38}(3^5-1)\vdots 11\Leftrightarrow A+242.3^{38}\vdots 11\)

Mà $242.3^{38}=11.22.3^{38}\vdots 11$ nên $A\vdots 11(**)$

Từ $(*); (**)$ mà $(7,11)=1$ nên $A\vdots 77$ (đpcm)

29 tháng 3 2020

36^38+41^33
= 36^33 . 36^5 + 41^33
= 36^33 . 36^5 + 36^33 - 36^33 + 41^33
= 36^33(36^5+ 1) - (36^33 - 41^33)
= 77.Q1 - 77.Q2
=> chia hết cho 77

10 tháng 7 2017

Ta có :

\(36^{38}=\left(7.5+1\right)^{38}\) đồng dư với 1 (mod 7)

\(41^{43}=\left(7.6-1\right)^{43}\)đồng dư với - 1(mod 7)

\(\Rightarrow36^{38}+41^{43}\)đồng dư với 0 (mod 7)

Hay \(36^{38}+41^{43}\) chia hết cho 7 (1)

Ta cũng có :

\(36^{38}=\left(3.11+3\right)^{38}\) đồng dư với \(3^{38}\) (mod 11)

\(41^{43}=\left(44-3\right)^{43}\) đồng dư với \(-3^{43}\) (mod 11)

\(\Rightarrow36^{38}+41^{43}\)đồng dư với \(3^{38}-3^{43}\) (mod 11)

Ta thấy : \(3^{38}-3^{43}=3^{38}\left(1-3^5\right)=3^{38}.\left(-242\right)=3^{38}.11.\left(-22\right)⋮11\)

\(\Rightarrow36^{38}+41^{43}\) chia hết cho 11 (2)

Mà (7;11) = 1 Nên từ (1) ; (2) => \(36^{38}+41^{43}⋮77\) (đpcm)